anﬁ e s mN g

ey T oy
RADC-TR-90-11
Final Technical Report
January 1990

CONCEPTUAL MODELING VIA LOGIC
PROGRAMMING

Logicon

John Burge, Bill Noah, Les Smith

DTIC
S ELECTE |
MAR28 1990

=B

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign natioms.

RADC-TR-90-11 has been reviewed and is approved for publication.

APPROVED: “ u‘ﬂ R

JAMES L. SIDORAN
Project Engineer

A
APPROVED: {a/bm-cz(/L%L}\

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: %‘N ' é ‘
IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COEE) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

UNCLASSIFIED

URi TEICATION RS PA
Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Ta. REPORT SECURITY CLASSIFICATION b, RESTRICTIVE MARKINGS
UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRAQING SCHEDULE distribution unlimited.
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
LSIS890166 RADC~TR-90-11
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(If applicable)
Logicon Rome Air Development Center (COEE)
6<. ADORESS (City, State, and /P Code) 7b. ADORESS (City, State, and 2IP Code)
255 W 5th st
San Pedro CA 90731 Griffiss AFB NY 13441-5700
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
QRGANIZATION (if applicabie) .
Rome Air Development Center COEE F30602-87-D-0092 (CSC Task)
8¢ ADORESS (City, State, ang ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. [NO. NO ACCESSION NO.
Griffiss AFB NY 13441-5700 62702F 5581 QB 01
[T TITLE (include Securty Glassfication)
CONCEPTUAL MODELING VIA LOGIC PROGRAMMING
12. PERSONAL AUTHOR(S)
John Burge, Bill Noah, Les Smith
F'13a. TYPE QOF REPORT 136, TIME COVERED 14. DATE OF REPORT (Year, Manth, Day]]15. PAGE COUNT
Final FROMSep 87 TO Mar 89 January 1990 176
16. SUPPLEMENTARY NOTATION
N/A
17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB-GROUP Conceptual Modeling
12 05 Logic Programming Prolog
Q3 Cogmand and Coutrol

19. ABSTRACT (Continue on reverse if necessary and identify by dlock numbder)

The Conceptual Modeling via Logic Programming Task was to determine whether it is feasible
to use conceptual models as a design aid for command and control systems, and whether these
conceptual models can practically be implemented using logic programming. The major efforts
included a review of conceptual modeling and logic programming, development of concepts for
using conceptual modeling to aid command and control designers, development of a demonstra-
tion system, and evaluation. A Quintus Prolog-based demoastration system was built. The
feasibil/ity of using conceptual modeling implemented in logic programming was established.

- — 7

' '

< . s . ‘, “ e - - I'e . 'l') N > ://',},-// B . (y<— .

o X
20. OISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
T uncLassirieorunumiteo [same as reT 0 onic users | UNCLASSIFIED

m

222. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢. QFFICE SYMBOL

James L. Sidoran 315) 330-2762 RADC_(COEE) |

OO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION QF THIS PAGE

UNCLASSIFIED

TABLE OF CONTENTS

. Conceptual Modeling and Logic Programming,
2.1 Definition and Purpose of Conceptual Models
2.2 The Nature of Conceptual Models: Domain-Independent Aspects
2.2.1 Knowledge Representation in Conceptual Models
222 Knowledge Representzd in Conceptual Modeis
2.3 The Nature of Conceptual Models: Domain-Dependent Aspects
2.4 Conceptual Modeling Methodologies
2.4.1 Top-Down Methedology,
2.4.2 Exploratory Programming iiiiiiinnnin...
2.5 Application of Logic Programming to Conceptual Modeling
2.6 LogicProgramming
2.6.1 History of Logic Programming
2.6.2 TheConceptofProlog oo,
2.6.3 Advantages of Logic Programming U
2.7 Approaches Other Than Logic Programming
2. Tl LSD ot e e
2.7.2 Knowledge Engineering Tools (Expert System Shells)
2.7.3 Comparison of Alternative Implementation Technologies

. C%Model Development Through CMLP Technology
3.1 GoalsoftheModels............................ e S
3.2 The Conceptual Representation of Command and Control Systems
3.2.1 DescriptionModel
3.2.2 Requirements and Design Traceability Model
323 CostModel ...
3.2.4 Sensors and Weapons Against Thizat Model
3.2.5 Goal Attainment Model,
326 CapacityModel i
3.2.7 Simulation InterfaceModell
3.2.8 System SensitivityModel
3.2.9 Analogy DevelopmentModel,
3.3 CMLP Design Conceptcuuuuiiittiinnieetiae ittt
33.1 UserlInterfaceot
332 Meta-Managerottt
3.4 Concept for CMLP USeoviiiiie ittt e,

. CMLP Demonstration Modelooouuninin i

4.1 Demonstration Model Details coviiiviiinn ...
4.1.1 DescriptionModel 0 i
4.1.2 Sensors and Weapons Against Threat Model
4.1.3 CapacityModel i
414 Goal AttainmentModel
4.1.5 System Sensitivity Model,
4.1.6 Operational Concept Example (Air Defense)

~jii=

4.2 Exploitation of Logic Programming 62
4.2.1 Implementation of CMLP Demonstration System 62
4.2.2 Use of Knowledge Engineering and Inferencing 67
4.3 User Interface Development i 67
4.3.1 Requirements for the User Interface 67
4.3.2 TheProWINDOWS Interface............c.oivriiiiiimannnenanan.. 69
4.3.3 ProWINDOWS Descriptioncoiiiiiiiiinninennnnnanns. 69
4.3.4 ProWINDOWS Problems and Solutions 70
4.3.5 CMLP Interface Structurec.ouitir e rnennnnnnnnenns 73
4.3.6 Lessons Learned and Recommendations Regarding the User Interface .. 77
5. Evaluation of CMLP Resultscoiiiiiiii i 79
5.1 Use of Conceptual Modeling and Logic Programming 79
5.1.1 Conceptual Modelingin CMLP iiiiiernn ... 79
5.1.2 Logic Programmingin CMLP iiirneninann... 82
5.1.3 Development Environment Needs 84
5.1.4 Alternative Logic Programming Implementation Approaches 85
5.1.5 User Interface for CMLP Demonstration 87
5.2 Application of Conceptual Modeling and Logic Programming to C2 Design 87
Bibliography . . .o e e e 103
Appendix A — CMLP Instance Directory i, 107
Appendix B— CMLP User'sManualc.iiiiiniiiiinininennnnnnnn.. 133
Appendix C — Selection of the Logic Programming Language 163
Acceasion For /
NTIS GRA&I 4
DTIC TAB m
Unannounced |
Justificatio
By
| Distribution/
Avallabllitv Coctes
|Avail and/or
Dist | Spectial
|
s\ |
[

1-1.

3-1.
3-2.

4-1.
4-2.

4-4.
4-5.
4-6.

4-8.
4-9.

4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-117.
4-18.

5-1.

2-1.
3-1.
5-1.
5-2.

LIST OF FIGURES

CMLP Project Schedulecciiivnn.... P 2
CMLP Design Conceptvvtitititn ittt ittt et e et it ia e 42
Steps in a User's Methodology 49
CMLP Demonstration Model Design Conceptcciiiiininen... 52
Baseline Displayo i e 53
Characteristic Developer i e 54
Threat Specification Form 55
Sensor and Range Specification Form oo .. 85
Weapon Specification Form 56
C2EIRIMENLS « . o o ettt e e e e e e e e e 57
C2 Function Reviewer/Developer FOrm 58
SWaT Model Form i e e e e e e 58
Capacity Model Form i e 59
CZEvaluation GO&lSonunetet et e 60
Goal Evaluator Form............. e PP 60
System Sensitivity RulesForm 62
CMLP Demonstration Model Concept: Air Defense System 63
CMLP Demonstration TLCSCs and LLCSCs 65
Class Structure in CMLP Demonstration System 68
Schematic Diagram of Sensor/Range Development Form 73:
Browser Initialization Processes i, 76
The Nature of CMLP ModelSnerttt ettt e 80
LIST OF TABLES
Comparison of Built-In Capabilities for Candidate Implementations 37
Implementing Models for CMLP Design Goalso, 41
Evaluation of User Interface it ... 88
Evaluation of CMLP Goalsttt ittt ittt e ieeiieeeenn. 90

——

1. INTRODUCTION

This document is the final report of aresearch
task performed by Logicon for the COEE
Branch of RADC’s Command and Control
Directorate. The research concentrated on
investigating the feasibility of using Concep-
tual Modeling implemented via Logic Pro-
gramming, or CMLP, as a design aid to
improve U.S. capability to develop command
and control systems.

1.1 PROBLEM STATEMENT

Weapon systems must evolve as the threat
they were designed to counter evolves. Much
of the change is implemented in the command
and control elements to allow existing sensors
and weapons to be employed in new ways. In
like manner, changes in weapon and sensor
systems almost always force a concomitant
change in command and control.

Command and control system designers
usually rely on simulations to evaluate
alternative concepts and point designs.
However, simulations are expensive and
difficult to use, and often they operate at too
low a level of detail to provide meaningful
results to the C? system designer. The
emerging technology of conceptual modeling
may prove valuable by providing high-level
models of important C* features. That is,
conceptual modeling may aid the designer in
forming a perception of the system, and thus
may greatly benefit the design process.

1.2 APPROACH
The CMLP project consisted of three
interrelated investigations:

e Collection of C* system design informa-
tion and design processes

e Investigation of the capabilities of
conceptual modeling and its implementation
through logic programming

e Development of an experimental system
to gain hands-on experience with the
conceptual modeling of C? systems

The CMLP project was in practice divided
into the following seven tasks, with the last
further subdivided into six subtasks. Figure
1-1, the project schedule, indicates planned
and actual task completions.

1. Define C3] Model. This task collected a
variety of data on the nature of C3I systems.
To bound the task, we concentrated on C3I
systems performing air defense and space
defense missions, for each mission defining
the hierarchy of the C? system, the nature of
the threat, the functionality and implementa-
tion of the sensors and weapons interacting
with the C3I system, and the functionality of
each element of command and control,
communications, and, to the extent that
information was available on an unclassified
level, intelligence. We also defined generic
performance goals for evaluating C2 systems.
With RADC concurrence, we further bounded
the problem by not collecting cost data, and by
excluding communications and intelligence
from the remainder of the project. This
narrowed the focus to a limited research area
for better evaluation of the application of
CMLP technology. The full set of data
collected during this task was presented in
progress reviews. We incorporated a substan-
tial subset in the demonstration model after
making the information generic with applica-
bility across a variety of C2 elements for
defensive systems. Appendix A describes the
information used in the model.

2. Investigate Logic Programming. This
task surveyed conceptual madeling concepts
and logic programming techniques. Section 2
describes the task outputs.

3. Define User Interface and Query
Language. This task initially considered a
line-by-line interface that would be portable
from machine to machine. However, we
decided that portability was less important
than providing a flexible, easy-to-use inter-
face that would encourage repeated use of the
demonstration tool and also encourage future
implementations. We therefore changed to
ProWINDOWS, an interface using a powerful
window structure. The interface was limited
to run on workstations manufactured by Sun
Microsystems, Inc. Appendix B, the User's
Manual, describes the interface concept.

7.3 Extend the Database

7.4 Provide Data Dictionary Access
7.5 Provide Output Capability

7.6 Evaluate Modal

1987 1988 1989
Tosk OINJD|J]FIM[AIMIJ]J]AIS]OINID|JIFIM]A
1/2{3{4(51617)819(10{1112]13]14|15]16|17118]19
1. Define C3i Model
2. Investigate Logic Programming
3. Define User interface and Query Language
Line by Line SR Windows
4. Define Procedures for Specitying Output L
5. Select Logic Programming Lanquage
6. Deveiop Methodology for C31 Users |
7. Design and Deveiop Modet . l [
7.1 Develop Knowledge Base - i ' ‘ ‘ |
72 Develop Query/Updata — | | l |

C— Original Plan mmamm Actual

39-02-121¢

Figure 1-1, CMLP Project Schedule

4. Define Procedures for Specifying
Output. This task concentrated on specifica-
tion of C? data in a knowledge base that is
easily accessible by the user. The outputs of a
model with a user-friendly window-oriented
interface are defined by the interface itself

5. Select Logic Programming Language.
This task performed a trade study of the
available logic programming languages and
selected the Quintus implementation of the
Prolog language. Section 3 discusses the
goals, model design, and concept for using the
model.

6. Develop Methodology for C3| Users.
This task specified the nature of the user,
developed a concept of user operation. and
produced the user’s manual presented in
Appendix B. The task was updated following
input from RADC on the nature of the

conceptual models and the of
ProWINDOWS. -

7. Design and Develop Model. This task,
whose results are described in Section 4, had
six subtasks, as follows. The task produced an
Operational Concept Document, Software
Requirement Specification, and Software Top
Level Design Document.

7.1 Develop Knowledge Base. This
subtask defined the design of the knowledge
base for each of the models and for multiple
sessions and baselines. It was changed
considerably with the advent of the window
interface and the ability to interact between
elements in the knowledge base by the use of
multiple windows.

7.2 Develop Query/Update. This task

developed a query/update capability featuring

use

easy access to and change of all parameters
within the knowledge base.

7.3 Extend the Database. All early
development work on the knowledge base
used the air defense mission. This subtask
collected information to populate databases
for space defense and for extended air defense
in Europe.

7.4 Provide Data Dictionary Access.
This task provided capability for data
definition within the window forms, and
extensive help capabilities.

7.5 Provide Output Capability. This
task provided the capability to print the data
in the knowledge base.

7.6 Evaluate Model. This task focused
in priority order on evaluating (1) the extent
to which the techniques involved in
Conceptual Modeling via Logic Programming
can be applied to a design problem such as
command and control, (2) the extent to which
CMLP can effectively model C2 and other
systems, and (3) the demonstration model
as built. Section 5 describes the extent to
which we used conceptual modeling and
logic programming in the demonstration
and evaluates the potential of conceptual
modeling and logic programming for a C2
design.

2. CONCEPTUAL MODELING AND LOGIC PROGRAMMING

This section provides an overview of
conceptual models and modeling methodolo-
gies, both independent of and dependent on
the problem domain being modeled; presents
observations about the process of conceptual
modeling drawn from our experience in
modeling; presents two alternatives for
constructing a model within a chosen domain,;
and considers logic programming and other
techniques for implementing conceptual

models.
2.1 DEFINITION AND PURPQOSE OF
CONCEPTUAL MODELS

Conceptual models allow us to create and
manipulate an abstract representation of a
hypothetical or real-world system at a level
of abstraction comparable to a human
expert’s conceptualization of a problem-
solving domain (Brodie, ‘Mylopoulos, and
Schmidt, 1984). A conceptual model consists
of a number of symbol structures and symbol
structure manipulators corresponding to
entities, attributes, and relationships of the
world of a human observer (Borgida,
Mylopoulos, and Wong, 1984). We distinguish
between conceptual models and other uses of
the term “model,” such as the traditional
mathematical model (a set of mathematical
entities and relationships that satisfy a given
set of axioms) or the analog model (e.g., 2
wind-tunnel model).

Conceptual modeling is conducted inde-
pendently of the final implementation of the
model in software, in hardware, or on paper.
(We will restrict subsequent discussion to the
first of these representation possibilities.) In
this respect it is similar to the use of semantic
data models that permit the specification of
database elements and relations before an
actual design specification has been achieved.
It is also similar to the specification of
computer programs in terms of basic
constructs (data types, control flow, variables,
functions, etc.) before implementing the

-5-

constructs in a particular language, or even
before choosing the language.

The impetus for conceptual modeling has
arisen from the increasing complexity and
precision that can be supported by artificial
intelligence—specifically, the ability to repre-
sent the knowledge of a human expert in a
problem-solving domain. This knowledge is
no ionger confined to facts and problem-solv-
ing algorithms, but includes goals and
subgoals (embracing strategies and tactics),
heuristic knowledge, and meta-knowledge.
Exploiting these capabilities requires com-
munication between domain experts and
knowledge engineers, and between knowledge
engineers and end-users of Al-based systems.

Conceptual modeling is the basis for such
communication. Expert system shells and Al
development environments point the way
toward automated support for conceptual
modeling, and thus toward broadening the -
communications channel between the key
players in the expert system development
cycle. This widening is essential to resolving
the major bottleneck in the development of
intelligent systems and expert planning and
decision aids: getting knowledge out of the
head of the human expert 2nd into the system.

The following discussion, based on the
combined experience of many researchers in
the field, including the CMLP team, provides
indications of the nature of conceptual
modeling and current limitations on its
usefulness. It also indicates the technical
requirements that remain to be met if
conceptual modeling is to become a well-
defined tool for system development, much as
top-down methodologies for analysis, design,
and implementation have become (Yourdon,
1979). We begin an increasingly detailed
examination of these issues by looking at the
meta-level of modeling, that is, at the aspects
of conceptual modeling that are commcn
across application domains.

-
-

THE NATURE OF CONCEPTUAL
MODELS: DOMAIN-INDEPENDENT
ASPECTS

While we can speak in general terms about
conceptual modeling from a domain-
independent perspective, we must neverthe-
less acknowledge that, like much of human
activity, constructing conceptual models is an
inherently goal-driven process. This is no idle
philosophical point: specific decisions con-
cerning basic epistemological issues, the
selection of a theory of modeling, the
methodology for model creation, the selection
of data used to create the model, the
interpretation of these data, and the
structures used to implement the interpreta-
tion are all influenced by the problem-solving
environment within which the model will be
put to use. To fully understand conceptual
models, therefore, we can benefit from
examining a set of “first principles” that put
conceptual modeling in a broader context
before going on to issues of kmowledge
representation and methodologies.

Gaines (1988) describes humanity as a
“distributed anticipatory system,” that is, a
coordinated set of semiautonomous systems
whose primary social drive is the anticipation
of the future. This arises from basic survival
needs; the human community must anticipate
the future if it is to react to or alter it (the
latter capability perhaps being a principal
criterion of “human intelligence” that could
be applied to “machine intelligence™). A
strategy of information control has evolved
which optimizes the comparison of threats
and resources; its goal is to minimize
uncertainty at the levels at which reality can
be modeled. This characterization provides
the systematic foundation of general theories
of modeling.

It is important to note that this approach
emphasizes the social nature of modeling.
All conceptual models are, by definition,
based on human conceptualizations of reality.
All models are therefore to some degree
subjective, even at the most primitive level of
physical measurement (e.g., as subject to the

2.

6~

limitations of the uncertainty theory and the
propositions of quantum mechanics). We
believe that even the direct modeling of a
physical system (e.g., inferring the structure
of a stochastic automaton from its behavior)
is qualified by cultural, organizational,
personal, and cognitive biases that ultimately
derive from the foundation delineated above.
Therefore, it is impossible to speak of
conceptual modeling independent of the
socially derived personal constructs of the
human source of the knowledge that resides in
the model. Typically, this source is the domain
expert whose knowledge is first elicited, then
reorganized and expressed, by a knowledge
engineer.

The role of the domain expert in the
anticipatory social dynamic that we have
described is a special one. Knowledge in the
system increases on the basis of induction;
only induction creates new knowledge and
therefore reduces uncertainty We may
paraphrase Goodman’s (1973) ‘notion of
reflective equilibrium (as interpreted by
Gaines) as: “Knowledge is amended if it
produces an inference with which we cannot
agree; an inference is rejected if it leads us to
reject knowledge without which we cannot
live.” These judgments cannot, however, be
supported on an individual basis—the result
would be chaos in the form of a truncated
shared conceptual model among the members
of society. To accommodate this problem, the
community of domain experts serves as the
point of reference for the evolution of our
socially shared knowledge base. They are the
arbiters of the knowledge acquisition process.

To provide guidelines for using conceptual
models and assessing the scope of the problem
space they can address, we need to understand
this process. Gaines has provided one theory
of modeling which integrates epistemological,
methodological, action, cultural transmis-
sion, and knowledge transmission hierar-
chies. This theory is well suited to the social
nature of conceptual modeling and provides a
framework on which we can build a detailed
st.udy of conceptual modeling from both

domain-independent and domain-dependent
perspectives.

Gaines's view of modeling is based on the
interplay of events (the flow of uncertainty up
the hierarchy) and actions (responses to
uncertainty flowing down). This polarity can
be seen as representing bottom-up informing
(and its antithesis, surprising) and top-down
structuring, corresponding to efferent and
afferent neural channels. Yet, we must keep in
mind that ut each level these channels
interact. Perception (of an event) is as much a
structuring of the sensorium as it is the
passive transmission upward of signals, a fact
which is true socially as well as individually.
The agreed-upon structure of knowledge (i.e.,
the socially shared conceptual model), arbited
by the community of domain experts,
influences what is seen, and therefore what is
modeled and how the underlying reality is
acted upon through the model.

We can summarize Gaines's approach by
combining the different hierarchies at each of
six levels.

Epistemologically, the first level is the
source system, based on the distinctions
among the fundamental concepts (or personal
constructs) that make it up. These distinc-
tions are made in the course of actual
interactions with the world. Cognitive skills
at this level are basically reflexive, based on
stimulus-response pairs and associations
between constructs and primitive acts.
Knowledge is transmitted culturally through
the informal mechanism of mimicry and
behavioral modeling. Experts transmit their
knowledge similarly, by example.

The second level is the data system, based
on distinctions made about an event in the
source system. The level can be seen as the
basic representation of objects and relations.
These distinctions are made on the basis of
our experiencing of (including measuring) the
source system. Cognitive skills at this level
involve linking constellations of experience
into complete action sequences on the basis of
generalization of similar experience. Knowl-
edge is transmitted culturally by reinforce-

ment, rules, or induction based on events in
the source model. The expert transmits
knowledge by working with and supervising
an apprentice.

The third level is the generative system,
which yields productions that predict events
in the source system in terms of the data
system. The match between these predictions
and the events propagating up the hierarchy
signifies the accuracy of the model. This
level represents hypotheses based on experi-
ence. The cognitive skill at this level is the
ability to build an optimal action sequence.
Culturally, knowledge is transmitted by
technical means (i.e., rational explanation);
the expert transmits knowledge through the
literature and responses to questioning.

The fourth level is the structure system: the
comparison of generative models, for instance
in terms of simplicity. This level is achieved
through correspondences (or analogies)
among hypothetical rationalizations. The
cognitive skill involved is goal-based compari-
son of alternative models. Culturally, knowl-
edge is transmitted by simile and metaphor—
by transfer from related domains. The expert
transmits knowledge by using analogous
models drawn from similar problem-solving
situations.

The fifth level is the meta-system, which
contributes the basis for comparing models. It
is acquired through abstraction (which is the
foundation of analogy). The cognitive skill
associated with this level is the creation of
abstract models in the form of templates
which can be instantiated to satisfy a given
goal set. Knowledge is transmitted culturally
through formalisms, such as mathematical
laws. The expert also transmits knowledge in
the form of formal laws.

The sixth level (and potentially higher
levels) is represented by the meta-meta
system, which specifies further relations on
the levels below. For instance, such a system
might provide contrasting theories of knowl-
edge for comparing models with different
criteria. This level is achieved through
transcendencies, or accounts of abstractions.

The associated cognitive skill is the recogni-
tion of the entire process as being level
dependent, and the ability to generate new
relations among levels; this requires being
able to stand outside the framework (of the
lower levels). Knowledge is culturally
transmitted by system-theoretic analysis or
by transcendent experience. The expert
transmits knowledge through the process of
deriving formal laws.

The principal uses of this modeling theory
are to emphasize the hierarchical nature of
conceptual modeling and to map this nature
onto the technical means for constructing a
model. Gaines suggests a hierarchy of
knowledge engineering techniques already in
use that correspond to the six levels:

1. Knowledge base: facts and inferencing
rules

2. Expert system shell: operational system
for applying the knowledge base

3. Inference system: derives the conse-
quences of the facts

4. Planning system: determines how to use
the inference system to satisfy the goals

5. Explanation system: answers questions
on the basis of the inferences made

6. Knowledge acquisition system: the
processes used to establish the knowledge
base (and establish the inference and planning
strategies)

Gaines’s approach results in some founda-
tions for knowledge engineering that are
worth adapting from knowledge acquisition
to conceptual modeling (which are very
similar activities):

e There is a detailed structure to the
cognitive processes used in conceptual
modeling. There are links between these
processes and neural processes in the brain.

e The basic system that should be
considered in modeling includes a social
component in terms of which the modeling
effort will inevitably be organized. This
component must therefore be recognized.

e Cultural and expert knowledge transmis-
sion proceed in explicitly identified ways
during model construction.

e Groups of exper rather than individu-
als, should be used in developing conceptual
models to capture social, cultural, and
experiential variance.

e Methodologies currently available can be
incorporated into conceptual modeling
efforts, analyzed, and compared.

The hierarchical view of conceptual
modeling brings up another important issue:
as the philosopher Korzybski pointed out,
there is a distinction between the map and the
territory. Or, as Bateson (1979) noted, all
modeling is a coding, or transformation,
between the model and the thing being
modeled, the Ding an sich. This coding
involves separating a system into its
components: recognizing parts and wholes.
Such activity, DBateson showed, is a
convenience—there is nothing intrinsic in
nature which necessitates any particular
dissection. We therefore suggest that one
must look to the context of a particular model
to discern the reason for a particular choice of
objects, relations, facts, rules, inference
mechanism,; etc.

What must be taken into account is that the
matrix provided by the choice of representa-
tional media and the decisions of the
components to be discretely represented
inevitably distorts the system being modeled.
Consider, for example, a mapping exercise in
which land masses are mapped onto a
coordinate system. The resulting model will
appear quite different if the coordinate
system resides on a flat matrix, as opposed toa
toroidal one. Bateson points out that any
matrix, including a language or propocitional
system, will in principle distort the system
being mapped onto it. This is the Procrustean
bed of conceptual modeling: the thing being
modeled is shortened or lengthened to fit the
model in which we strive to put it.

With this view of conceptual modeling as
background, let us discuss some of the more
concrete aspects of conceptual models. We will
examine these aspects from the perspective of
the top levels of our hierarchy; we will present
alternative models—at different levels of

abstraction—of what is legitimate to do
within a conceptual model and how to do it.
Thus we are in the realm of meta-meta- and
meta-modeling. We will explicitly consider
the representation of knowledge in concep-
tual models, the classes of knowledge that can
be modeled, the cognitive aspects of
knowledge acquisition and representation in
conceptual models, and general methodolo-
gies for modeling.

2.2.1 KNOWLEDGE REPRESENTATION
IN CONCEPTUAL MODELS. Methods for
representing knowledge in conceptual models
have evolved from relatively simple abstrac-
tions of data in database design and
programming languages to high-level con-
structs in Al-based expert systems. We will
briefly survey this spectrum.

2.2.1.1 Data Models. As a starting point
we will consider the classical data model as
presented by Brodie (1984). We will note a
trend toward greater semantic complexity in
data modeling, ultimately fusing descriptive
models with procedural information using
some of the characteristics of programming
languages.- These characteristics will lead to
an examination of specific features in
programming languages that support concep-
tual modeling, such as object-oriented
programming. We will then consider the
representation of higher level knowledge from
the perspective of artificial intelligence.

Data modeling can be seen as a pre-
cursor to conceptual modeling; it is the
implementation-independent representation
of information to be contained in a database
that captures the static and dynamic
properties needed to support the desired
processes (notably transitions and queries).
The static properties are defined in a schema,
which includes all object types, attributes,
and static constraints. Dynamic properties
are captured in the specifications for
transactions, queries, and reports.

The definition of these terms provides a
foundation for looking at higher level
meta-models of conceptual modeling:

Object: any concept, event, or entity worth
recording in a database that meets informa-
tion and processing requirements. (Note the
emphasis on the problem context even at this
simple level.) Simple objects are irreducible,
and are capable of independent existence.
Composite objects are composed of two or
more objects, and are dependent on their
constituents.

Attribute: a single, static property of an
object that has no existence independent of
the object. Attributes can be used to describe
characteristics or relations.

Relation: the mapping of a set of objects
that satisfies a given set of constraints.
Objects can be related in one-to-many,
many-to-one, and many-to-many ways. These
are often characterized as networks, hierar-
chies, tables, and so on.

Operation: an action that changes the state
of the database, for instance by adding,
deleting, or changing objects/attributes
(includingrelations). Operations also exist for
changing the data model itself Operations
can be simple or composite.

Constraints: rules used to define static and
dynamic application properties. These rules
can constrain objects, attributes, relations,
and operations. For instance, a semantic
integrity constraint may be used to prevent a
database update that would result in an
invalid state for the particular data model.
Constraints are inherent (suitable for direct
representation in the data model to describe
the model's basic semantic properties),
explicit (defined using a combination of
mechanisms provided by the data model to
specify structures, relations, and assertions
over objects and their properties), and
implicit (produced by the interaction of other
constraints). Dynamic constraints use pre-
and post-conditions to trigger the appropriate
execution of operations.

A number of classes of data model exist. A
review of these is useful to provide a starting
point for the organization of conceptual
models.

The primitive model consists of simple
groupings of uniquely identified objects that
can be accessed directly.

Classical models include hierarchic, net-
work, and relational models. Hierarchic and
network models organize objects using
one-to-many binary relations; they tend to be
representational and have a rich potential for
inherent constraints. The relational model is
based on tuples which can specify many-to-
many relation among objects; a set-oriented
facility is provided for access and to establish
constraints and assertions.

Semantic data models attempt to provide
richer concepts and greater expression of
meaning. They include:

Extensions to classical models:

Structural model: establishes rela-
tional schema with no distinction between
objects and relations.

Object-role model: extends the network
model by including the concept of a role. An
object can play different roles in an applica-
tion, with different properties for each role
- (e.g., weapon platform as a target and as an
emitter).

Entity-relationship model: combines
features of relational and network models,
making clear distinctions between objects and
relations. Can be depicted as a conceptual net-
work (i.e., objects are nodes and relations are
arcs).

Mathematical models: data models with
formal notations and definitions of concepts
based on either set theory or first-order logic.
In the logical view, objects are represented by
logical sentences (providing attributes, rela-
tionships, and constraints) that are evaluated
against a database of facts to answer queries
about the model; changes in the application
are made through adding or deleting logical
sentences, but not necessarily by changingthe
factual base. This contrasts with approaches
in which the model is a schema of object types
whose instances are added or deleted from the
database to follow changes in the problem
environment.

-10-

Irreducible data models: models that
reduce knowledge to atomic components
(which are irreducible). Such a model
supports the independent updating of facts
and recombination of facts in appropriate
ways for a given reasoning strategy;
therefore, irreducible models are sometimes
seen as having greater modeling precision and
flexibility.

Bingry-relationship model: an irreduc-
ible model that is a restriction of the
relational model; relations are binary, rather
than n-ary. That is, a relation exists between a
single object and attribute pair.

Irreducible relational model: relaxes the
binary constraint, but specifies that informa-
tion will be lost if a relation is decomposed.

Functional data model: the most widely
used semantic model. It combines attributes
of the relational data model with functional
programming. Objects are represented as
aggregations of attribiites, and relations are
functional mappings between objects. The
method of functional decomposition lends
itself to list processing, the simplicity of
which is highly appealing. The model is also
irreducible, since each attribute is related to
its object by a function.

Finally, static semantic hierarchy models
integrate relational concepts with attributes
of semantic nets. Their capabilities support
data abstraction: details are suppressed
except for those pertinent to the problem
space. The basic activities involved in this
process (Bordiga, Mylopoulos, and Wong,
1984) are:

Classification: grouping of entities that
share common characteristics into a class
over which uniform conditions hold

Aggregation: treating a collection of
concepts as a single concept

Generalization: extracting from one or
more given classes the description of a more
general class that represents the commonal-
ities while suppressing some of the detailed
differences

Specialization: introducing detail into
the description of a general class to produce a
more specialized class
Association: creating a higher level set

object from relationships between similar
objects

These processes are fundamental to
conceptual modeling. They allow model
design to proceed in a fashion analogous to the
specification of programs by systematic
decomposition. Through the addition of
programming language capabilities and the
strong use of such features as abstract data
types, classes, strong typing, and polymorphic
types, the semantic hierarchy model is
extended to support these processes, becom-
ing a dvnamic semantic hierarchy model—
one that is well suited to modeling the
dynamics of the domain as well as its static
properties.

2.2.1.2 Abstract Data Types and Object-
Oriented Programming. A key feature of the
semantic data models—one which will recur
in our review of knowledge representation in
conceptual models—is the abstract data type.
Ziles (1984) describes a type as a precise
characterization of structural or behavioral
properties shared by a collection of entities.
According to Shaw (1980), abstract data types
have emerged from concerns in program
language development for information hid-
ing, locality of access, and systematic views of
data structures. Their use involves partition-
ing the program in advance into modules that
correspond to major data structures of the
final system. The name of the data type and
the operations permitted to use it are visible
outside of the type definition. The representa-
tion of the type in terms of built-in data types
(or other defined types) and hidden routines
called only from within the module is not
visible outside the type definition. Ziles refers
to a collection of types, together with a family
of operations (such that the operations are
closed within the types in the collection) as an
algebra. Algebras are seen as the actual
building blocks of conceptual models.

-11-

The influence of typing and type checking
will be apparent in the other modeling
methods we will discuss. This influence is
illustrative of a trend in data modeling,
programming languages, and Al techniques
that recognizes (Brodie, 1984) the need for:

Data independence: the separation of
logical and physical implementation

Semantic relativism: the ability to view and
manipulate data in the way most appropriate
for the problem solver

Integration of structure and behavior: the
co-specification of both the static and
dynamic properties of the system being
modeled

Support for data and procedural abstrac-
tion: the ability to emphasize relevant details

‘while suppressing irrelevant details

Modeling directness: the ability of the data
model to represent the properties of the
system being modeled; properties of the
application should be inherent constraints of
the model

Modeling uniqueness: the representation of
a property in only one way in a model; this
reduces the number of design choices, subject
to requisite flexibility

Precise definition: providing means to
precisely define the model, checking consis-
tency, verifying completeness, certifying
nonredundancy, and confirming the absence
of anomalous results during updates

Understandability: the ability of a model
to be understood by its users, which
requires economy and independence of
concepts, economy of notation, and adequate
documentation

Implementability: the ability of the model to
be implemented in a robust, efficient manner

The style of knowledge representation seen
in dynamic semantic hierarchical models
shows movement toward the integration of
the descriptive and procedural components of
conceptual modeling. This has been illus-
trated by the use of abstract data types—
essentially a programming concept—in such
models. This integration is taken farther in

the world of programming languages by
object-oriented programming. Experience
with object-oriented programming has had a
major impact on conceptual modeling using
expert systems.

Like an abstract data type, an object
consists of some private memory and a set of
operations (Goldberg and Robson, 1983). The
tight coupling of objects and operations
differentiates objects from abstract data types
(Ziles, 1984). A type is a set of entities to
which a set of operations applies. Objects
communicate through the exchange of
messages—a request for an object to carry out
one of its operations. The set of messages to
which an object can respond is referred to as
its interface. Message ensure the modularity
of an object-oriented programming system by
specifying what is desired, but not how to do
it. Their use is perhaps the major distinction
between objects and abstract data types.

Objects are organized into classes repre-
senting the same kind of system component.
The individual objects described by a ¢class are
its instances. The class definition describes
the instance’s private memory and how its
operations are carried out. A class can be
thought of as a collection of attributes and
integrity constraints (usually lacking in
abstract data types). All instances of a class
have the same interface, but have private
instance variables that support specializa-
tion. Thus, an instance inherits properties
from the hierarchy of classes of which it is a
member. Each level in the hierarchy is a
progressively more specialized entity. Some
object-oriented programming systems allow
inheritance from multiple classes (multiple
inheritance).

Historically, object-oriented programming
derives from tools to support simulation, such
as Simula and Smalltalk. Given the elegance
with which objects can represent the different
entities in a dynamic, interactive environ-
ment—affecting each other through the
consistent mechanism of message passing—it
is easy to see why object-oriented program-
ming has strongly influenced conceptual

-12-

modeling. It is powerful medium for satisfying
the criteria listed earlier.

There are limits to the effectiveness of
implementations of object-oriented program-
ming like Smalltalk, which rely on sequential
co-routine message passing. Conceptual
models that include the representation of
self-knowledge and that can deal with open
systems and narrative modes of thought
(discussed in the next section)—systems
which deal with problem-solving methodolo-
gies that are only weakly algorithmic—
require concurrent message-passing schemes
that take advantage of parallelism. Hewitt
and deJong (1984) have described a modeling
system for such modeling problems. It is based
on abstract objects known as actors. Actors,
like objects, communicate through the
exchange of messages. When a message is
received, an actor can change its local state,
create new actors, and transmit messages. A
serialized actor is one which can change its
state and acts on only one message at a time.
Messages are queued for serial actors in order
of arrival. An unserialized actor is one which
never changes its local state; it can process an
arbitrary number of messages at the same
time. Traditional properties of transactions
are implemented by having actors follow the
appropriate message protocols (¢ransaction
managers). Hewitt and deJong state that this
meta-model unifies the conceptual basis of
both the lambda calculus schools of program-
ming (based on functions and data structures)
and the object-oriented schools of program-
ming (based on objects that are separate from
procedures). Since the actor model is defined
mathematically, it is independent of any
particular implementation and provides a
consistent foundation for functions, data
structures, classes, suspensions, features,
objects, procedures, and processes.

2.2.1.3 The Al Perspective. We have seen
how data models and programming
techniques have evolved to deal with greater
semantic complexity, modularity, provability,
and ease of maintenance. There is an
indistinct boundary between the representa-

tion of knowledge in data models and
programming languages, and between these
frameworks and Al. Essentially, Al
methodologies—and, specifically, expert
systems—have evolved to handle situations
that require the accumulation and codifica-
tion of a powerful corpus of knowledge about a
problem domain (Waterman, 1985). They
operate at a higher level of abstraction—that
is, they are capable of more directly
supporting conceptual modeling. This is not
to say that there is a one-to-one correspon-
dence between expert systems and conceptual
models. Expert systems can handle a range of
activities, including prediction, diagnosis,
interpretation, design, planning, monitoring,
debugging, repair, instruction, and control.
Yet, each of these activities seems to imply the
existence of an underlying conceptual model.
The model may be more objective in some
applications (e.g., repair, control) and more
subjective (cognitive) in others (e.g., design,
planning, instruction); but expert systems
have evolved diverse techniques for concep--
tual model representation regardless of their
functions. Because of the high-level nature of
knowledge in expert systems, their knowledge
representation techniques have become
fundamental to conceptual modeling.
General methods of problem solving,
embodied in procedural languages that
employ standard data modeling techniques,
greatly restrict the interactive nature of
knowledge acquisition and the flexibility of
knowledge representation. In addition, expe-
rience has shown that the more classes of
problem a single, general program can handle,
the more poorly it performs on any individual
problem. Work in expert systems has
therefore concentrated on applying general
reasoning paradigms to bodies of comprehen-
sive, high-quality, detailed knowledge specific
to a problem. Knowledge representation in
expert systems may use some of the
techniques previously described, such as
objects. Some additional techniques that are
unique to Al-based systems are considered
next. These techniques represent a continuity

-13-

of the evolution from simple models of
low-order data to the high-level representa-
tion of concepts.

2.2.1.4 State-Space Representations.
One of the earliest representation formalisms
used for conceptual modeling in Al programs
is the state-space representation (Barr and
Feigenbaum, 1981). It is not a real
representation of “knowledge”; rather, it
represents the structure of a problem in terms
of the alternatives available at each state of
the problem. Solutions can be generated by
exhaustively searching the problem state-
space. The drawback of this method is that,
for interesting problems, the combinatorial
explosion of alternatives renders thorough
searching impractical. To prune the state-
space to reduce the number of branches that
must be examined, the system must be able to
reason about the state-space. It must, for
example, be able to apply heuristics based on
emerging experience with the problem space.
This implies a need for a higher level of
knowledge representation about the world.

2.2.1.5 Formal Logic and Logic Pro-
gramming. Perhaps the most obvious choice
of formalisms to represent world knowledge is
formal logic. In a formal logic, a set of rules of
inference is applied to facts which are
axiomatic, or already proven to be true, to
generate new facts that must be true. In
addition, statements that can be represented
in the logic language can be tested against the
body of known facts to determine its truth
(subject to the restriction imposed by the
incompleteness theorem). Inference rules
allow deductions based on the syntax of
expressions, regardless of their meaning. The
entailment (set of inferences that can be
drawn) from a set of statements in a logic is
completely specified by its rules of inference.
Any knowledge base composed of statements
within a logic can therefore be kept logically
consistent and can be guaranteed to be
correct.

Let us briefly examine some of the kinds of
logic that have been applied to conceptual
modeling (Thayse, 1988). The propositional

calculus (also called the sentential calculus)
deals with sentences that are either true or
false. This is the semantic domain of this
logic—the only meanings that sentences can
have. Propositional calculus has a vocabulary
of propositions (or propositional constants)
and connectives. The connectives are nega-
tion, conjunction, disjunction, implication,
and equivalence. Rules are provided for
writing combinations of connectives and
propositions into well-formed formulas. The
connectives are truth functional: the truth
assigned to a formula is known as soon as the
truth values of the propositions are known.
Truth is assigned to a formula on the basis of
an interpretation function, or interpolation. A
formula is consistent or satisfiable if it has a
model—that is, if there is an interpretation
that makes it true. A formula is valid when it
is always interpreted as true, regardless of the
interpretation of the propositions it contains.

Although the propositional calculus seems
quite powerful as a conceptual modeling tool,
it happens that only a small set of correct
reasonings can be formalized within it
(Thayse, 1988). For example, simple syllo-
gisms cannot be expressed as valid formulae
because propositional logic considers proposi-
tions to be atomic. On the other hand, the
natural languages we use to think about and
express our models of the world treat
propositions as structured objects whose
meaning depends on the meaning of their
components. Natural language is also elliptic,
having concepts which are bound to specific
values by virtue of sentence syntax. Thayse,
by analogy to mathematical language, refers
to these concepts as variables, as opposed to
specific entities, which are constants.

Handling the greater complexity requires
the power of the predicate calculus (Clocksin
and Mellish, 1984). This logic has an extended
vocabulary that includes:

Constant symbol: a symbol standing for a
single concept; also an atom.

Variable symbol: a symbol that stands for
different individuals at different times; a
place-holder.

-14-

Predicates: statements about variables
and/or constants by themselves or in relation
to each other.

Compound term: a function symbol together
with an ordered set of terms as its arguments.
The number of terms is the arity. Functions
are actually added to the predicate calculus to
make it easier to express knowledge; together
with the equality predicate, it raises the
calculus to a first-order logic.

Atomic proposition: a predicate symbol with
an ordered set of terms as its arguments.

Compound proposition: a set of atomic
propositions which may be qualified by
quantifier symbols connected by connectives.
The connectives are the same as in
propositional logic. The quantifiers are the
existential quantifier (refers to the existence
of some object(s)) and the universal quantifier
(refers to all of a class of objects).

We will now consider the relationship
between .the predicate calculus and logic
programming, using Prolog as an example.
Formulae in the predicate calculus expressed
in terms of implication and equivalence can be
rewritten in terms of conjunction, disjunc-
tion, and negation. In fact, many kinds of
transformation are possible without sacrific-
ing expressive power. For this reason, a
normalized form, clausal form, is used to
represent formulae. The construction of
clausal form involves:

e Removing implications

e Moving negation inwards

o Skolemizing (removing quantifiers by
introducing Skolem constants in place of
variables introduced by quantifiers; function
symbols are introduced to remove the
universal quantifier)

e Moving quantifiers outward

e Distributing conjunction over disjunc-
tion)

e Formulating clauses by separating con-
Junctions (A clause is a collection of clauses,
each of which is a collection of literals. A
literal is either an atomic formula or a
negation of an atomic formula.)

As noted earlier, from propositions in a
formal logic, other propositions can be
derived by applying rules of inference as a set
of inference steps. One such rule of inference
is the resolution principle, which allows the
mechanical proof of theorems from axioms;
once propositions have been selected to which
to apply the resolution principle, valid
conclusions are generated automatically.
Resolution is designed to work with the
clausal form. That is, given two appropriately
related clauses, a new clause will be produced.
Inference steps deal with three types of
clauses:

Denial: -A (A is not true)

Assertion: A (A is true)

Implication: A — B; . . . BN (the set of
Bs or antecedents imply A, the
consequent)

A simple example of resolution is:

if Sl A
then S: -B can be derived from S1

_ and S2

In resolution terms, the parents S1 and S2
can be resolved to the resolvent, S. When
variables occur in the clauses, the process of
unification is involved; the variables must be
instantiated to make matching formulae
identical.

One approach to using resolution is to
derive all possible theorems from a set of
propositions and examine them to see if a
desired theorem has been proven. Doing so is
clearly impractical, and two properties of
resolution make it unnecessary. First,
resolution is refutation complete. That is, if a
set of clauses is inconsistent, resolution can
derive from them the empty clause. Second,
resolution is correct; it can only derive the
empty clause if the set is inconsistent. The
empty clause expresses “falseness”—there is
no interpretation for the predicates, con-
stants, and functions that make them
simultaneously express true propositions.
Thus, by taking a set of hypotheses and
combining them with clauses representing
the negation of conclusions in which we are

-15-

interested (goal statements), resolution can
show that the goal statements are true or
false. All that is needed is a strategy for
selecting the sequence in which to examine
clauses and unify formulae.

Prolog is a logic programming language
that provides the resolution mechanism.
Prolog operates on Horn clauses, which are a
refinement of the more general clausal form.
Prolog uses linear input resolution. It starts
with the goal clause and resolves it with one of
the hypotheses to yield a new clause. This is
then resolved with another hypothesis to
produce a new clause. This process proceeds;
at each stage, the clause last obtained is
resolved with one of the original hypotheses.
A clause whose head matches one of the goals
is found, variables are instantiated as needed,
the matched goal is removed from the body of
goals to be satisfied and the body of the
instantiated clause is added. Prolog follows a
depth-first strategy to organize the investiga-
tion of alternative clauses to satisfy the same
goal. : -

The principal advantage of logic program-
ming languages like Prolog is that the
program has declarative rather than proce-
dural semantics. That is, it focuses on
specifying what a solution should look like
rather than on how to obtain it. It is
representing knowledge rather than the
details of execution, which are inherent to the
language. The programmer formulates a
description of the domain and entailments
within it; the language supplies a default
method of applying it.

The actual implementation of a logical
paradigm poses some problems for computa-
tion. For reasons of performance and
conservation of resources, some control over
the theorem-proving process must be utilized.
One is that clauses are considered in their
textual order in the program. In addition,
Prolog introduces a number of structures for
controlling the inferencing process and for
performing such functions as I/0 and data
conversion. These methods even allow
variation in the axiom set at different points

during the proof. Thus, Prolog deviates from
the predicate calculus; some of its functions
approximate what higher order logics can
provide. It is, however, a simple, practical
language with the advantages of declarative
semantics and clarity that are expected from
logic programming.

Formal logic is useful for addressing what
McCarthy and Hayes (1969) termed the
epistemological part of modeling (i.e., what
kinds of facts are required, how they can be
represented, and how conclusions can be
drawn from them). Specifically, logic is a
natural way to express many kinds of
knowledge; it is precise; it is flexible; and it is
modular. However, formal logic may be weak
‘= handling the heuristic part of the
problem—that is, determining how to use the
knowledge stored in the system. As we have
seen, logic programming languages like
Prolog, FOL, and GOLUX compensate by
furnishing control operators while retaining
logical precision.

2.2.1.6 Production Systems. Production
systems (Barr and Feigenbaum, 1981) repre-
sent knowledge as sets of rules (productions)
in the form of an implication (i.e., a condition-
action pair, such as “IF a stoplight is red AND
you have stopped THEN a right turn is
permitted”). Productions may have associ-
ated with them certainty levels on their
actions and certainty levels/thresholds on
their conditions. The conditions under which
a rule applies are made explicit, and
interactions among rules are minimized.
There are no “calls” among rules.

The data against which the conditional part
of a production is compared reside in a
short-term memory buffer. The condition
must be present in a context data structure for
the production to “fire.” These structures can
be lists, arrays, or more complex aggrega-
tions. Rule testing is controlled by an
interpreter. When a rule fires, the action may
modify short-term memory, assert or retract
another rule, or perform an /O function.
During the repeated cycles of condition
testing and action that the interpreter

-16-

—

regulates, conflict resolution may be neces-
sary. That is, if multiple rules match
conditions, a choice must be made as to which
rule or rules should be executed. Redundant
actions, for example, can be discriminated
against.

Production systems have proved useful in
controlling the interaction of declarative and
procedural knowledge, and have been
employed in a number of large, well-known
expert systems (e.g.,, DENDRAL, MYCIN,
PROSPECTOR). Recent work has centered
on control issues and on self-learning in
production systems. A number of desirable
features commend production systems for
certain types of conceptual models: they are
modular (each rule is an independent piece of
knowledge), have a uniform knowledge
structure, and are natural (in that they
describe what to do in certain situations—
much as human experts often describe their
tasks). The can be very inefficient, however,
for the cost of modularity is overhead.
Sequences of actions are hard to encode; that
is, it is difficult to “chunk” knowledge at
different levels. Also, flow of control in the
system can be very difficult to determine.
Modeling domains for which production
systems seem best suited are those in which
knowledge is diffuse (composed of many
separate facts), processes can be represented
as independent actions, knowledge can be
separated from its application, a*.d knowledge
appreciation is data directed.

2.2.1.7 Semantic Nets. Developed by
Quillian (1968) and others, the semantic net
was originally created to represent human
associative memory. A net is composed of
nodes (representing objects, concepts, events,
etc.) and arcs (representing interactions and
relations). Important associations are made
explicit in nets; relevant facts about an object
can be inferred by tracing links to related
nodes without searching through an entire
database. Of particular interest are the arc
classes referred to as isa and subset. These
indicate generalization and specialization
and establish inheritance in the net.

Using the net formalism, knowledge that is
naturally represented in the form of logic
statements can be captured. For instance, a
has part arc connecting the object represent-
ing the class “birds” and the class “wings” is
equivalent to the proposition: “All birds have
wings.” If “robin” is connected to the class
“bird” via an isa arc, we can infer that a robin
has wings. This is equivalent to the remaining
statements in a syllogism: “Robins are birds.
Therefore robins have wings.”

Some types of knowledge are impossible to
encode in the basic net structure. For
instance, the presence of a property for a
bounded period of time cannot be shown by
arcs, which have only a binary nature. One
solution to this problem, posed by Simmons
and Slocum (1972), allows nodes to represent
situations and actions as well as classes and
instances of objects. Situation nodes can be
associated with outgoing arcs called case
frames that specify the arguments to the
situation predicate. - The possibility of
inheriting default and expected values is also
provided.

Unlike formal logics, semantic nets have no
formal semantics—no consistent concept of
what a given structure means. Meaning is
only provided by the procedures that
manipulate the network. A variety of systems
have been introduced that use quite different
procedures for drawing inferences. An early
example is Quillian’s spreading activation
model, used to study memory. More generally,
most semantic nets use a matching paradigm.
A fragment is constructed that represents a
desired object or query. It is matched against
the network to see if such an object exists.
During this process, variables are bound to
values required to make a match (like
instantiation in Prolog). One such system,
SNIFFER (Fikes and Hendrix, 1977), has the
power of a theorem prover. It also employs
nieuristic knowledge expressed by procedures
called selector functions that describe the
order in which network components should be
matched.

~17-

The semantic net formalism has been
elaborated, in particular in combination with
the concept of frames (see below). Barr and
Feigenbaum note that the formalism cannot
be “pushed too far,” because of semantic
problems and computational limits that arise
when networks become large. In particular, it
is necessary to consider such questions as:

e What does a node really mean?

e Is there a unique way to represent an
idea?

e How is time handled?

e How is degree of belief handled?

e What are the appropriate rules of
inheritance for a net?

2.2.1.8 Frames and Scripts. Frames
were originally proposed by Minksy (1975) for
understanding complex human behavior (e.g.,
natural language dialog, visual perception).
Frames were adapted to the representation of
sequences of events by Schank and Abelson
(1977) in the form of scripts. Both frames and
scripts are methods for organizing knowledge
representation in such a way as to focus
attention, facilitate recall, and promote
inference.

Frames are compatible with the struc-
turalist position in educational psychology:
new information is interpreted and organized
in terms of what is already known (Piaget,
1972). This facilitates expectation-driven
processing: looking for data or patterns in
data based on the presumed context. A piece of
information fits into a slot; slots are organized
into the context of a larger frame. Like
objects, frames are organized to exploit
inheritance—particularly as regards the
presence of particular slots. Adding new slots,
or tightening constraints on inherited slots,
accomplishes specialization.

Slots can themselves be complex structures,
or pointers to other frames. Slots can be
associated with constraints, type checking,
defaults, and other facets. Attached proce-
dures (also called active values) are daemons
that respond to updates to a slot to perform a
variety of functions (e.g., computing a value).

Thus, procedural knowledge (slot-specific
heuristics and triggers) is integrated with
declarative knowledge.

A number of systems have been constructed
using frame-type representations. Scripts
have been used in research. Our own
experience shows the power of frame-type
structures in representing C? systems and
their components.

2,2.2 KNOWLEDGE REPRESENTED IN
CONCEPTUAL MODELS. We now turn from
how to represent knowledge in conceptual
models to what knowledge to represent. The
knowledge contained in a conceptual model
can range from the relatively objective (e.g.,
physical measurement or inventories of
real-world systems) to the relatively subjec-
tive (e.g., creative problem-solving dynamics
of human experts). At the objective end of the
spectrum, domain experts express a consen-
sus about the scope and meaning of the
knowledge represented, although some resid-
ual uncertainty (i.e., subjectivity) is always
present. At the subjective end, experts tend to
have idiosyncratic views of the problem
domain. This dimension represents the extent
to which there exists a shared conceptual
model of the domain. A poorly shared model
tends to complicate communication and is
accompanied by extremes in expert disagree-
ment. A well shared conceptual model
facilitates communication and is accompa-
nied by expert agreement. Differences in
methodology can also be associated with the
ends of this spectrum.

Problem domains that are more objective
lend themselves to mathematical modeling,
simulation, statistical methods, analogs,
and other concrete mappings onto a model-
ing matrix. Domains that are more sub-
jective require the techniques associated
with artificial intelligence—specifically with
expert system design. Our work has dealt with
a problem domain, C? system design, that
essentially resides in the middle ground.
While it has objective aspects (e.g., the kill
probabilities of specific weapon systems), it
also has subjective elements (e.g., the

-18~

attainment of goals by a specific C2 system).
Even some of the more objective components,
such as the components and attributes of a C2
system, have a subjective component. Soviet
and U.S. designers, for example, might chunk
the system in different ways. Evidence for this
is easily observed in multilingual technical
dictionaries. Even though some piece of
equipment is described, there is no alingual
core meaning. The literature on simulation
and mathematical modeling is relatively
thorough on the modeling of purely objective
problems. We therefore focus on the more
subjective elements.

Problem domains also differ in terms of
what is known as the closed world
assumption. This is the assumption that all of
the information about the world to be

“modeled is complete: all and only those

relations that can possibly hold among the
objects of interest are those represented in the
model. In contrast to this, some domains are
by nature open; they undergo continual
evolution. Such systems tend away from
algorithmic and toward problem-solving
methods; their distributed components may
require significant self-knowledge to accom-
modate new knowledge that flows into the
system.

The use of artificial intelligence methods in
connection with conceptual modeling is
predicated on the premise that certain classes
of phenomena—particularly more open prob-
lem domains—are ill represented in an
algorithmic way. Such phenomena require
heuristic, or discovery, methods that tend to
rely on emerging patterns in information
representing the system being modeled.
Conceptual models developed to support such
reasoning must be able to represent more
complex structures than are typically found,
for instance, in first-order languages.

For example, Kornell (1988) distinguishes
the knowledge represented in conceptual
models in terms of formal versus narrative
thought processes. Formal thought is con-
cerned with how to know the truth; it seeks
closed, well-defined systems, as described

above. Narrative thought, on the other hand,
is concerned with the construction of
meaning; it seeks open, dynamic systems. The
operations of formal thought are described by
Kornell as syntactic: conjunction and disjunc-
tion, deduction and induction, strict implica-
tion, instantiation, and idealization-—all
operating on the formal properties of a
referent. The operations of narrative thought
are semantic: representativeness, plausibility,
and cultural appropriateness—all dependent
on context. Formal thought may be too
constraining for a number of real-world
problems—problems where reliance on heu-
ristic knowledge is high. On the other hand,
formal thought lends itself to truth mainte-
nance mechanisms which permit the confi-
dent application of long chains of inferencing.

Kornell makes the point that problem
solving in domains which rely heavily
on narrative modes of thought requires
conceptual models of expert behavior. The
basic ingredients of such models are
facts, heuristics, relation-structures, and
transformations. .

Kornell sees great importance in capturing
patterns of reasoning in conceptual models.
For example, queuing problem components on
the basis of urgency may be required in a
given domain. In another, group-and-
differentiate or propose-and-revise strategies
may predominate. Goals and contextual
knowledge are also important, since they have
a determining influence on task organization.

Kornell’'s emphasis is echoed in work on
conceptual modeling reported in Noah and
Hopf-Weichel (1985). In such domains as
military operations and intelligence, narra-
tive thought requires:

Specific knowledge: necessary to interpret
specific environmental information, either as
discrete elements or as a pattern

Background knowledge: required to inter-
pret specific information within a context

Procedural knowledge: rules used during
interpretation (e.g., to construct meaning,
draw inferences, make decisions)

-19-

Meta-knowledge: knowledge about knowl-
edge

Barr and Feigenbaum (1981) provide the
following list:

Objects: We think of the world in terms of
facts about objects in the world; therefore,
objects, their classes, and their descriptions
have to be represented.

Events: Actions and events that affect
objects or in which objects engage must be
represented; a formalism may also be required
for temporal and cause-effect relations.

Performance: Behaviors about how to do
things—the performance of skills—must be
represented.

Meta-knowledge: As in the previous
formulation, this is knowledge about what is
known. This includes the origin and extent of
knowledge, its reliability, and its relative
importance. It also includes what the model
knows about it own weaknesses, con-
fusability, levels of expertise, etc. Another
important category of meta-knowledge is
when and how to apply different reasoning
strategies, based on the class of problem or
state of the solution.

Reasoning strategy: In order to do
something it has not been explicitly told to do,
a conceptual model must invoke a reasoning
strategy (or strategies) that must be encoded
within the model, such as:

Formal reasoning: syntactic manipula-
tion of data structures to deduce new ones
following prescribed rules of inference

Procedural reasoning: use of simulation

Reasoning by analogy: inference based on
similarities among model components

Generalization and abstraction: creation
of new knowledge through induction and class
comparison

Meta-reasoning: application of meta-
knowledge, e.g., selection of inferencing
strategies

Johnson, Zaulkeman, and Garber (1988), in
their work on the semantic and syntactic
analysis of protocols, provide a taxonomy of

~ the kinds of knowledge that can be acquired

from human experts for modeling. Their
categories provide a somewhat different
insight into the possible referents of
conceptual models:

Operations: primitive problem-solving
activities that do not depend on a particular
context

Episodes: patterns of operations repeated
within and across problems

Data cues: operands processed by problem-
solving operations

Actions: means of making transitions
between problem states

Goals: desired states of the problem

Abilities: capacities to perform actions

Conditions: problem states defined by new
data cues

Solutions: end goals

Strategies: permissible ways to move among
problem states

The emphasis on different kinds of
knowledge in a particular conceptual model
based on the narrative paradigm depends on
the problem domain. Kornell cites domains
typified by:

e Frequent use of analogy

e Frequent recourse to root metaphors

e Correlational (rather than causal) asso-
ciations

e Problems of recognizing and distinguish-
ing gestalts

e Problems of reconciling conflicting
gestalts

Another dimension of problem domains—
one particularly important in the context of
narrative knowledge—is the extent to which
world knowledge is involved. World knowl-
edge can be considered knowledge not directly
related (or bounded by) the problem domain.
A subclass of world knowledge is common-
sense knowledge. Traditionally, heavy reli-
ance on world knowledge in a domain makes it
a poor candidate for knowledge-based
problem-solving systems. However, for the
purposes of conceptual modeling (in which a
representation of a system, rather than a
complete, correct solution to a problem, may
be the principal goal), world knowledge must

-20-
R |

be taken into account. Littman (1988) found
that such knowledge can be extremely
important.

A theme that emerges is the importance of
seeing the conceptual model as a whole,
including its problem-solving environment.
Woods and Hollangel provide some additional
insight into the effect of this holistic view on
the contents of conceptual models. Like
Kornell, they are concerned with the
narrative mode when they describe concep-
tual modeling in terms of a joint cognitive
paradigm based on a problem-driven, rather
than a technology-driven, approach. A
problem-solving system, such as CMLP is
composed of both automated and human
parts. They note that the problem-solving
system (from which the underlying concep-
tual model is inseparable) exceeds the sum of
these parts, being determined by its
organizational and structural processes. The
three elements that make up such a system
are the world to be acted on, the agent who
acts on the world, and the representation of
the world used by the problem-solving agent.

The representation of the world proposed
by Woods and Hollnagel (1988) involves a
decomposition of the world into a hierarchy of
goals, functions (set of processes for achieving
the goal), and requirements (what the
processes need to achieve the goal). The
goal-means network that results from a full
problem decomposition is able to capture
interactions among goals and interactions
among functions. Moving up through the
pnetwork defines the consequences (and
reasons for them) that result from unchecked
disturbances in system variables. Moving
down the network defines the causal chains
and maps the means for correcting
disturbances.

In these various meta-models, we have seen
a transition from relatively descriptive
knowledge to more prescriptive knowledge;
from an emphasis on inventories of knowledge
to problem-driven knowledge. We have seen
that the knowledge in a conceptual model
must encompass factual and procedural

dimensions; both a body of facts/rules and a
meaus to draw conclusions from them (i.e., to
perform inferencing) are needed. Regardless
of the orientation selected for a particular
domain, however, there is a common problem.
Bylander and Chandrasekaran (1988) refer to
this as the interaction problem. Briefly put,
knowledge representation is strongly affected
by the characteristics of the problem and by
the inference strategy to be used.

One reason for this is that knowledge must
be actively chosen to provide leverage for
solving the problem. The knowledge should
have high utility; complexity should be
reduced. Not everything that the domain
expert knows is of equal usefulness. The
problem characteristics are salient to this
choice. Another reason is that the knowledge
will have to be put to use by a mechanism that
will use it to draw conclusions—the inference
engine. The knowledge must match the
capabilities and requirements of this engine.
We saw in the previous section that the
knowledge-representation formalism depends
on the problem and the inferencing technique;
we now see that the contents of the knowledge
are similarly impacted.

Bylander and Chandrasekaran have
reevaluated some generally held beliefs about
the knowledge in a conceptual model on the
basis of the interaction problem:

e Knowledge should not necessarily be
uniformly represented and controlled in a
conceptual model. This belief denies the
interaction problem. There is merit in
choosing knowledge (and formalisms) that
match the components of the domain.

e The knowledge base should not be
completely separated from the inference
engine. This belief also denies the interaction
problem, and historically has led to systems in
which inference strategies are implicitly
coded in the knowledge base. The separation
is artificial.

o Control knowledge should not be encoded
as meta-rules. Meta-rules address the
problem of how to have multiple inferencing
strategies in a conceptual model. However,

-21-

the separation of control from domain

knowledge promotes the view that knowledge

can be acquired and represented independent
of its application. This implies that different
sets of meta-rules can be applied as needed.

Given a clear strategy, however, domain

knowledge will be adapted to interact with the

strategy.

e The ontology of a domain should not be
studied exhaustively before considering how
to process it. Knowledge acquisition should
focus on the relevant aspects of the domain for
the problem at hand; an exhaustive ontology
of the domain is not necessary.

e Correct reasoning is not a critical goal for
knowledge-based systems. Emphasis on cor-
rectness detracts from critical issues, such as
the appropriateness of a strategy for a
problem. For example, in diagnosis, more may
be gained from abduction (assembling
composite hypotheses to account for various
symptoms) than from computing the uncer-
tainty of each hypothesis to an extended (and
artificial) degree of accuracy.

e Completeness of inference is not a critical
goal. This belief ignores the fact that certain
kinds of inferences will be more important
than others in a given problem domain.

e A representation that combines rules,
logic, frames, etc., is not necessarily what is
needed. Flexibility is important because it
gives the modeler the ability to choose an
appropriate paradigm. However, none of
the individual representation techniques
addresses the interaction problem, and none
distinguishes between different types of
reasoning.

Having now reviewed both the means of
representing knowledge in conceptual models
and the kinds of knowledge that can be
represented, we will turn to methodologies for
acquiring knowledge and constructing
models.

2.3 THE NATURE OF CONCEPTUAL
MODELS: DOMAIN-DEPENDENT
ASPECTS

Applying conceptual modeling to a specific

domain requires making a number of

decisions that will define the character of the
resulting model. As we have emphasized in
the preceding sections, these decisions are
based on a number of factors: problem type,
use to which the model will be put, available
resources (including computer resources,
domain experts, knowledge engineering
support, and time), contextual factors (social,
politicel, environmental, interfaces to other
systems), and end-user characteristics.

For any given set of characteristics
describing a problem domain, there will be
one or more optimum choices of model
configuration. By “configuration” we mean
the combination of types of kmowledge to
be represented (including declarative and
procedural categories), knowledge organiza-
tion, knowledge-representation techniques,
I/O and interface properties, and support
systems (including hardware, operating
system, shells, etc.).

The goals to be met by the configuration
(Weiss and Kulikowski, 1984) should be ease
of model design (it is generally desirable to get
the model running in a short period of time),
efficient performance, predictable perform-
ance, and capability for empirical testing and
validation.

In the previous sections, we have provided
an overview of knowledge organization and
representation issues. In the section that
follows, we will discuss methodologies for
developing conceptual models. The focus will
be on the general ways that domain-specific
factors impact the configuration.

We have repeatedly noted that a conceptual
model depends on the type of problem being
solved. A taxonomy of problems addressed by
expert systems (Waterman, 1986) is a
convenient one to adapt to conceptual
modeling:

Interpretation: inferring situation descrip-
tions from data (e.g., sensor data)

Prediction: inferring the likely conse-
quences of given situations

Diagnosis: inferring system malfunctions
from observable symptoms

~29-

Design: configuring objects under con-
straints

Planning: designing actions

Monitoring: comparing observations to
expected outcomes

Debugging: prescribing remedies for diag-
nosed malfunctions

Repair: executing plans to administer
prescribed remedies

Instruction: diagnosing, debugging, and
repairing behavior

Control: governing overall system behavior

In conceptual models, the domain being
modeled often involves more than one
problem type. A C2 system model, for example,
might include facilities for prediction (likely
outcomes of force-on-force engagements for
particular system configurations), diagnosis
(which system characteristics or interactions
of characteristics are responsible for real or
predicted mission failures), debugging (how
to fix the diagnosed problems), and design
(how to configure the fixes, given a set of
constraints, to accomplish the mission).

Any given problem type has a set of features
which further affect the choice >f model
characteristics. We are unaware of a
comprehensive list of these features, but an
example (from Waterman) will illustrate the
issues. Consider a problem that requires

" diverse kmowledge sources and representa-

tions. This suggests a solution feature in the
form of cooperating subsystems. This solution
feature in turn suggests s fool feature: a
blackboard architecture. In addition to the
problem features, there will also be applica-
tion features related to the use of the
conceptual model. To carry on with the
example, let us assume that the model is to be
used in a training system. This suggests that a
system feature should be the capability of
self-modification. This suggests a too! feature:
rule and control modification facilities.

The accumulation of tool features in the
course of this kind of analysis dictates the
choice of tool, unless this selection is
otherwise constrained. Thus far, we have been

treating conceptual models as (by definition)
implementation independent. As domain
specificities enter into the picture, however,
tool choice becomes an important issue. As we
noted in discussing the interaction problem,
this choice will have an effect on knowledge
representation and acquisition.

2.4 CONCEPTUAL MODELING

METHODOLOGIES

2.4.1 TOP-DOWN METHODOLOGY. A
view of the process of constructing conceptual
models (Martin, 1968) which is representative
of approaches based on strategies inherited
from top-down programming can be summa-
rized as follows:

1. Define the problem. This step includes
both a definitive formulation of the problem
and a suggested methodology for its solution.

2. Determine information and data
requirements. Such questions must be
answered as: what information will be
necessary? Where will the information be
obtained? How will the information be
handled? '

3. Collect information and data. In
conventional modeling, methods used include
literature searches, observation, generating
artificial data, experimentation, and expert
consultation.

4. Create hypotheses about missing or fuzzy
data. Assumptions such as these should be
periodically and critically reexamined during
model construction.

5. Establish a rationale for the model. This
is undertaken with consideration for the
nature of the real world, the problem, and the
tools available to solve the problem. The
deterministic and probabilistic elements
must be determined, man-machine interac-
tions considered, environmental factors
weighed, and functions and pathways
specified. On the basis of these data, an
approach is created for representing the
elements of the model.

6. Definethe parameters and variables and
weigh the significance and sensitivity of the
parameters to the problem.

-23-

7. Determine the measures of effectiveness.
That is, derive a function that expresses
system effectiveness as a function of all
parameters and variables. This cwa be
represented analytically or graphically.

8. Determine the approximation proce-
dures. Specify the interactions among the
parameters and variables.

9. Validate the model. This is difficult,
since the model has not been implemented in
software. Such techniques as checking
numerical calculations, reverse reasoning,
and desk checking are employed.

10. Document the model.

It can be seen that this is a linear sequence
of steps predicated on the assumption that
what is learned in later stages has no effect on
earlier decisions. We have found that this
methodological model is inappropriate for
conceptual modeling in which expert human
knowledge is an essential part. We believe
that an appropriate methodology can be
drawn from knowledge-based system con-
struction strategies.

2.4.2 EXPLORATORY PROGRAMMING.
As noted by-Sheil (1983), the conventional
methodology is ideally suited to well-
understood problems in which requirements
can be specified fully and accurately in
advance—simulations, for example. More
subjective conceptual models, with a greater
component of human judgment, are concerned
with problems that cannot be thoroughly
specified in advance of design and initial
implementation; the expert’s experience with
the model is a determining factor in its
ultimate design.

However desirable the conventional “top-
down” methodology may be, it cannot
practically be applied to an initial exploration
in a field, such as our application of
conceptual modeling to C2.

This situation has much in common with
expert system development, in which an
approach commonly known as exploratory
programming is employed. Similar to rapid
prototyping, this approach allows design and

implementation to proceed in parallel;
experimentation with the system defines the
evolving set of design specifications. Explora-
tory programming can be adapted to
conceptual modeling; it was the prototypical
methodology for our modeling work.

The stages of exploratory programming are
cyclical and iterative, unlike the conventional
approach. Adapted to conceptual model
development (from Hayes-Roth et al., 1983),
the stages are:

1. Identification. This stage involves
problem identification, participant identifica-
tion (e.g., acquisition of the services of
domain experts and selection of knowledge
engineers and software implementers),
resource identification, and goal identifica-
tion. Note the early role of resources in
specifying the problem; we found this to be a
major determinant in our study.

2. Conceptualization. This stage makes
explicit the key concepts and relations
identified in the first stage. Concepts and
relations elicited from the domain experts or

the literature of the domain are typically

diagrammed by the knowledge engineers to
create a preliminary conceptual model. Data
that are documented include data types,
strategies and subtasks, hypotheses utilized
by the domain expert, object relations,
relational structures (e.g., hierarchical,
causal, part-whole), solution processes, solu-
tion constraints, information flow, and
knowledge required to justify solutions.

3. Formalization. This stage involves
mapping the preliminary conceptuai model
created in Stage 2 onto formal representa-
tions based on the available knowledge
representation tools or frameworks. This
includes inference rules, control strategies,
and data structure contents.

A working prototype system can be used to
verify these mappings, and to further refine
the model. However, it is the opinion of some
authorities that the working prototype should
be built with the intent of discarding it once
the formalization process is complete. It was
our cuservation that this principle is valid

-24-

under the conditions of our study. The
creative interplay central to the exploratory
methodological model argues strongly for
separating implementation of the model in a
deliverable prototype from its interactive
construction.

When experimentation with the model
results in an agreed-upon fit of concepts to
frameworks, a set of specifications for the
conceptual model is prepared.

4. Implementation. This stage involves
mapping the specifications of the model onto
the specific structures, tools, or features
associated with the language or system shell
of choice. The knowledge is made consistent
and compatible and is organized to define a
specific information flow, resulting in a
deliverable prototype system.

A deliverable prototype can be implemented
in one of two ways. The deliverable version
can be developed in parallel with model

.construction, refining those features which

will interface the model to the outside world
(the user and other systems or subsystems)
and preparing the knowledge representation
environment for model integration when its
mappings have been adequately verified. The
design and implementation of the deliverable
prototype must be subjected to rigid software
engineering discipline and software valida-
tion and verification procedures. The alterna-
tive method, which is particularly appropri-
ate if a development shell has been used to
construct a working prototype for interactive
model construction, is to build on top of the
working prototype. This generally requires
some restructuring and refinement of the
knowledge representation in the working
prototype. Our experience was that trying to
both construct a model and implement a
deliverable computer environment for it (e.g.,
with a complete user interface) impeded the
smooth development of the conceptual model.

5. Testing. This stage involves testing the
deliverable prototype, first on a limited set of
problems and then on a broader set. The
domain experts and knowledge engineers are

involved both in problem selection and

solution evaluation.

6. Prototype Revision. The construction
and implementation of a conceptual model
require almost constant revision, which may
involve concept reformulation, representa-
tion redesign, or implementation refinement.
The basic measure of the success of revision is
convergence on performance. Lack of conver-
gence signals the need for more drastic
revision of the architecture or knowledge
base.

Much of the refinement will take place
using the working prototype. However, even
when the model has been sufficiently verified
using this medium to be integrated into a
deliverable prototype, progressive refinement
will still be required.

2.5 APPLICATION OF LOGIC
PROGRAMMING TO CONCEPTUAL
MODELING

The C? design support application developed

in this effort illustrates the application of the

conceptual modeling problem types.described
in Section 2.3, as follows.

Design: The main problem type 1nvolved is
the configuration of objects (in this case
the types, numbers and properties of C2,
sensor, and Weapon elements) under con-
straints provided by performance and cost
requirements.

Interpretation: A supporting problem type
for this application is the inference of likely
consequences of given situation. In the case of
an established baseline, this is the reality of
the fielded system. In the case where
hypothesized excursions are included, thisisa
potential system.

Prediction: Another supporting problem
type is the inference of the likely consequence
of given situations, in the form of attack
scenarios and defense configuration and
strategy.

Diagnosis: A further supporting problem
type is the localization of the cause of poor
performance.

-25-

Debugging: The prescription of remedies
for poor performance is also an important
component problem type.

Instruction: Instruction is also present, in
the limited form of assistance in (a) using the
CMLP system, and (b) identifying further
areas of system change. No attempt is made
within the CMLP demonstration system to
instruct the user in C2 concepts or design.

The CMLP system and its user are
considered as a whole in providing facilities to
address these problem types. Without an
automated support system, the user would
have to solve all these problems and their
interaction alone. The CMLP system acts to
facilitate the construction and evaluation of
solutions to these problems.

The joint man-machine system could be
mapped onto the levels explicated in the
Gaines (1988) hierarchy (Section 2.2),
illustrating its practical application. They
are:

1. Source System. This is the fundamen-
tal level understood by the user; it is basic and
implicit, and it provides the sea of shared
assumptions underlying the design process. It
will be implicitly present in the CMLP
system, since a conceptual model will reflect
the unstated assumptions of the experts from
which it was derived. The user will deem the
computerized support incomprehensible and
useless if his source system is significantly
different from that of the expert relied upon
by the knowledge engineer for domain
knowledge.

2. Data System. This is the level at which
all generic and specific baseline data are
represented. Since human memory is fallible,
the CMLP demonstration system maintains
the representation of all data.

3. Generative System. This is the level at
which hypotheses and predictions are made.
In the case of this initial effort, the user
generates hypotheses (supported by the data
system as presented by the CMLP system).
The CMLP system makes predictions about

the effects of the user’s hypotheses. (In a
future development of the CMLP system, the
system would provide some of the hypotkeses
that must now come from the user.)

4. Structure System. This is the level at
which analogies are made. The user may
develop an excursion on the basis of
excursions made to a different baseline. The
computer can provide support by searching
through alibrary of baselines, excursions, and
evaluations to offer analogies for the user to
consider.

5. Meta System. This is the level at which
models are compared. Although the system
may provide data to aid the user in this
activity, it is beyond the scope of the
proof-of-concept effort to automate this
activity.

6. Meta-Meta System. This is the level at
which the abstract descriptions of the lower
levels are productively compared. Facility
with this level is the hallmark of the “expert”
in a field. Again, this is beyond the scope of
this initial effort; the computer system
. supports by providing visibility into baseline
descriptions.

We developed a mapping of the Gaines
hierarchy and found it useful, but his mapping
into knowledge engineering techniques was
amended as detailed above.

At this point, the broad type(s) of problems
involved in the application have been
identified, and a partition has been drawn
between user-provided and machine-provided
contributions to their discovery and solu-
tions. The remainder of this subsection
develops the design of the computer program
by selecting from the alternatives described in
Section 2.2.1.

In creating this selection, Bateson's
admonition that there is no natural decompo-
sition of a domain is borne in mind. The
knowledge representation depends on the
inferencing to be performed on it, and vice
versa.

The CMLP system requires the following
kinds of constructs:

-26-

1. Domain Elements. The component
elements of the system, and their properties,
must be represented. They must also be
represented at an appropriate level of detail
(or abstraction) for the relationships and
activities described below. The representation
must allow expansion so that the models may
be enhanced and developed. It is a key feature
of the development of conceptual models that
they are, to a certain extent, cpen ended.

2. Relationships. The relationships
between the component elements of the
system must be represented as required for
further processing. Examples might include
subordination, communication, geographical
location, and so on.

3. Activities. The activities in the system
must be represented. These activities may
include the detection of threat, its engage-
ment, and so on.

4. Contexts. As the design for a C2 system
is developed, some updates will be made to the
above elements. Often the user will want to

- explore some design changes, evaluate them,

retract some changes and keep others, and
then progress down a new avenue of approach
to the problem he is trying to address. The
relationship between these design contexts is
thus hierarchical, with the user searching
through a space of hierarchically organized
contexts. Contexts can also be used in solving
other problems, such as temporal representa-
tions in which the validity of facts is a
function of time or of changes in other facts.
5. Interaction. Since this is a design
application, in which the user will interact
directly with the system, the information
must make it easy for the user to understand
the state of the model and the consequences of
his choices. The system must support the
user’s memory and should allow the user to
deal directly with the problem, rather than
dealing with a cumbersome interface. The
interface is particularly important for a model
that will be widely demonstrated outside a
small circle of dedicated and trained users.

The representational techniques discussed
in Section 2.2.1 may be applied via logic
programming to the CMLP system as follows.

1. Object Representations. Entities
within the conceptual model (such as, for the
C2 case, weapon platforms) are represented as
instances of the class of all weapon platforms.

Each class has a name and one or more
named properties (or attributes). Each may be
represented as an axiom, thus:

attribute(C2 Element, Type)
attribute(C2 Element, Level)
attribute(C2 Element, Number)
attribute(C2 Element, Function Status)

These four axioms represent four attributes
of the C2 Element class. The attributes are
Type, Level, Number, and Function Status.

Each instance of the class has a value
associated with each attribute, also repre-
sented as axioms. For example:

value(C2 Element#1, Type, ADOC)

value(C2 Element#1, Level, 1)

value(C2 Element#1, Number, 1)

value(C2 Element#1, Function Status,
Weapon Status-Manual)

These axioms represent the values of the
attributes they name for the first instance of
C2 Element (C2 Element#1). For example, the
Type is ADOC. Within the class there may be
several tvpes (such as SOC and ROC); these
would be represented as different instances
(say #2 and #3). The Level of the ADOC is 1,
the Numberis 1 (i.e., there is one of them) and
there are several Function Statuses.

When the user adds a new C2 Element to
the baseline, the system represents this by
adding new axioms to represent the values of
the attributes of the new C2 Element.
Changing a property of an object (such as the
status of a function) is represented as
replacing the corresponding axiom with one
containing the new value.

It is also important to be able to represent
and manipulate knowledge about the repre-
sentation of the objects themselves; this is
called meta-knowledge. One type of meta-
knowledge applies to values, and represents
information such as how many values an

-27-

object’s attribute may have. These may also
be represented as axioms, as follows.
number_of_values(C2 Element, Type 1)
number_of_values(C2 Element, Function
Status, many)

A similar mechanism can check to ensure
that values are within a legal range or set.

Such axioms would be interpreted during
the update process, so that when the user
specifies a new value for Type, the old axiom
would be replaced. In contrast, when the user
supplies a new function status, an axiom is
added to those already there.

Further processing may be required for
updates, such as when the number of an
armament attains some threshold (e.g., O)
during an engagement. This requires a rule,
thus:

if_changed(Armament, Number, to(O)):-

' alert(Armament,Number,O)

Such if-changed axioms are sought when-
ever a value is changed, and the action is
executed if the condition is true.

2. Inference. There are several types of
inference, which is the computation of the
properties of an object on the basis of the
properties of (often other) objects:

a. Hierarchical. In hierarchical infer-
ence, the properties of objects include those of
objects of which they are subclasses. For
example, many properties of threats are also
properties of threat carriers; among other
things, they are both targets. This can be
represented as follows:

type(Threat, Target)

type(Threat Carrier, Target)

Now when an inference requires instances
of Target, the system can return the instances
of Threat and the instances of Threat Carrier.

b. Goal Directed. Goal-directed infer-
encing is needed to determine how a state may
be attained. For example, it is used to
determine what excursions may impact a
given system characteristic. This may be
represented in axiomatic form as:

impact(Threat, Number, Increase,

Sensor, Number, Increase)

This is interpreted as stating that the
impact of an increase in Threat Number may
lead to an increase in Sensor Number. To find
what may lead to the change in Sensor
Number, the axiom set would be used to prove
the theorem:

impact(X, Y, Z, Sensor, Number,

Increase)

(where X, Y, and Z are variables) and would
return the following unifications:

X = Threat

Y = Number

Z = Increase

¢. Data Directed. Data-directed inferenc-
ing is used to determine the consequences of a
situation. For example, it may be used to infer
what system characteristics are impacted by a
given excursion.

In terms of the above example, the guery
(theorem to be proved) would be:

impact(Threat, Number, Increase, X, Y,

2)

(where X, Y, and Z are variables) and would
return the following unifications:

X = Sensor

Y = Number

Z = Increase

d. Value Based. In value-based infer-
ence, a procedure is attached to an attribute
that monitors changes to its value and
performs activities on that basis. For
example, it may be used to generate alerts
when a value crosses a threshold. An example
has already been given.

3. User Interface. The user interface to
conceptual modeis is often graphically based,
since that is a way to present a large amount
of complex material grouped in a manner
meaningful to the user. Where there is too
much data to display, a scrolling menu may be
used. Selection of an item in a menu can lead
to a new menu being popped up, for a further
or more detailed level of selection.

Manipulation of display (or other) devices is
extra-logical, but predicates may be provided
in Prolog to manipulate them as a side effect
of execution. Successful manipulation can
return “true,” unsuccessful “false.”

~28~

(As well as organizing textual data,
graphical interfaces can also display pictorial
data. This capability is not used in the initial
CMLP demonstration model.)

The examples given above are simplified for
presentation purposes; they are not written in
Prolog (although they are close) and they do
not reflect actual CMLP demonstration code,
for efficiency and other reasons. They do,
however, illustrate a general method for
representing conceptual models via logic
programming.

2.6 LOGIC PROGRAMMING

Logic programming is a relatively new
approach to computer program development.
The concept of logic programming was
developed from the way people think and
includes the capability to perform goal-
directed inferences for formal proof from a set
of facts. In this section we will discuss the
history of logic programming, the reasons
why we believe it is particularly applicable to
conceptual modeling, and the specific advan-
tages we expect to be able to realize on the
CMLP project.

2.6.1 HISTORY OF LOGIC PROGRAM-
MING. Computers are based on binary logic,
and they had been in use for only a few years
before the “Logic Theorist” was built in 1956
as a part of research at the Rand Corporation
and Carnegie Institute of Technology (Newell
and Simon, 1956). This program proved
theorems in the propositional calculus; both
the axioms and the theorems to be proved
were taken from the Principia Mathematica
(Whitehead and Russell, 1919). Although it
was able to prove 38 of 52 theorems, its
capabilities in terms of problem reduction
and operators required to transform sub-
problems were limited. Moreover, it was an
experiment aimed at discovering general,
domain-independent methods of problem
solving, for which the theorems provided
examples. It was not a direct assault on the
problem of proving theorems by machine.

As the field of artificial intelligence
developed, the search for a means to provide a
computational predicate calculus remained

an attractive but elusive goal. The break-
through came when Robinson (1965) devel-
oped the resolution principle (described in
Section 2.2.1.5) as the basis of a computa-
tional theorem prover. Robinson proved that
resolution was both complete (would prove all
theorems) and sound (would not indicate that
a non-theorem was true). Green, a student at
MIT, applied this work to the synthesis of
conventional programs from their specifica-
tions expressed in clausal form (Green, 1969).
This work provided, in a rudimentary form,
an equivalent of the modern logic interpreter.
However, the search space grew exponentially
with the size of the set of axioms used to state
the problem, so that this was still not a
practical technique. Further work by Hewitt
(Planner), Sussman (Conniver), McDermott,
and others did not succeed in resolving the
problem, but generally led American Al
researchers away from considering theorem-
proving as a potential computational
touchstone.

However, theoretical work followed up on
some original suggestions made by McCarthy
in 1959 (McCarthy, 1968). Techniques for

treating logic sentences as program state- .

ments were discussed in papers by Hayes
(1973) and Sandewall (1973), but the major
work in this direction was Kowalski (1974). A
thorough explanation in his book Logic for
Problem Solving (1979) postulated the
theoretical underpinnings for practical
efforts, but the paper was insufficient to prove
the potential.

At about the same time, Colmerauer and
others at the University of Marseille built a
logic interpreter and named it Prolog for
“Programmation en logique.” It provided the
practical basis for the field of logic
programming.

The key differences between the theorem-
proving approach and Colmerauer’s Prolog
were these:

Ordering of Clauses: The predicates are not
considered as a set, but in a programmer-
defined sequential order.

-29—

Restriction to Horn Clauses: There is at
most one conclusion that can be drawn per
clause.

These two constraints cut down the number
of unsuccessful attempts to apply knowledge
to such an extent that logic programming
became practical.

Colmerauer’s interpreter was used for
natural language analysis. It quickly led to
other implementations, and within a decade
to a surprising variety of other uses. At
Colmerauer’s facility, an implementation was
done in Fortran (Battani and Meloni, 1973),
and other European researchers sought the
means to improve efficiency and make the
technology more accessible (Bruynooghe,
1980; Mellish, 1980; Clark and McCabe,
1980). A center of development for Prolog
started in Hungary (Szeredi, 1980), where it
became a major implementation language,
applied to many problems ranging from drug
design (Darvas, 1980) to the design of
apartment complexes (Markusz, 1980).

But the major development in the West
started in 1974 when D. H. D. Warren visited
Colmerauer at Marseille-Aix. At that time the
term “logic programming” had not yet been
coined. Warren had been introduced to logic
programming by Kowalski, then at
Edinburgh University, UK., where he was a
colleague of Warren. He doubted that an
interpreter as simple as Colmerauer’s could
be effective, but found that he could very
easily write a program which defined how a
plan could be constructed as a sequence of
actions. An action could be appended to the
end of a sequence, or it could be inserted in the
middle. He found that his program got into an
infinite loop unless he used Prolog’s clause
ordering so that shorter plans were developed
before longer ones (Warren, 1986).

Returning to Edinburgh, he and his
colleagues quickly developed techniques
which improved efficiency to a point at which
execution speeds rivaled those of compiled
Lisp on comparable hardware (Warren and
Periera, 1977). This was very significant since -

Lisp had received far greater attention.
Intriguingly, most of the compiler was written
in Prolog, implicitly demonstrating that
Prolog was also an efficient language for
traditional programming tasks. They also
developed an improved surface syntax which
has become the de facto standard for Prolog.

At that time Logicon was supporting RADC
on an investigation of natural language
processing on the Digital Equipment Corpo-
ration’s PDP-11 computer, designated AN/
GYQ-21V. This machine had a 32 KB address
space, far too small for useful work from any
Lisp environment available at that time. For
comparison, the IBM personal computer
series has an address space of 640 KB, and
each of the CMLP saved states (13 total in the
CMLP Demonstration) occupies about 850
KB in the Sun’s address space of 4 GB. Early
work, using Spitbol, Forth, PDP-11 assem-
bler, and Fortran, had achieved only modest
success at implementing the full sophistica-
tion of Logicon’s theoretical results (Logicon,
1977). In 1978, Logicon acquired a Prolog
interpreter for the PDP-11 from Warren's
group, and used it for natural language
understanding. It was by far the most efficient
language for such work with limited
resources.

Having proven the potential of Prolog,
Logicon organized an invitation-only interna-
tional workshop on logic programming
funded by the National Science Foundation
and attended by most of the major Prolog
researchers in the world. The intention was to
bring the European researchers into close
contact with U.S. researchers, to give the
language a fair chance in this country. But of
the Lisp-based U.S. invitees, only a few
(including McCarthy, the progenitor of Lisp)
attended. Those who refused apparently failed
to recognize that the European approach,
though simple, had finessed the key problems
that had held up U.S. efforts. Some simply did
not understand Prolog. For example,
McDermott (1980) dismissed Prolog from
consideration in an article that showed that
the cut ("!") extra-logical operator was not

-30-

sufficiently powerful to satisfy complex
control requirements. In concentrating on
control, he had completely missed the benefits
of Prolog (van Emden, 1980).

The Logicon workshop was held in the year
following the first international workshop on
logic programming, held in Debrecen,
Hungary, in 1980, and a few months after an
open symposium organized at Syracuse
University. It was held a year before the First
International Conference on Logic Program-
ming in Marseille. Logic programming
symposia have been organized annually in the
U.S. and Europe throughout the current
decade. , '

A very .early product was an implementa-
tion in IBM 370 assembler available from the
University of Waterloo, Canada (Roberts,
1980). It is still available, but is completely
unportable to other machines. Full-scale
commercial development of Prolog interpret-
ers and compilers started in the mid-1980s, In
1984, Warren and his student Byrd joined an
effort by Silogic, Inc., to develop a fast Prolog
intimately connected to a system providing
DBMS capabilities. However, they soon left to
help form Quintus Computer Systems, from
whom the Prolog software used in the CMLP
project was acquired. (Silogic continued with
an overwhelmingly ambitious scheme to
provide a full natural language interface to
their DBMS, and soon folded.) In 1986, the
modular Hungarian system M-Prolog (Bend],
Koves, and Szeredi, 1980) was marketed in
North America by Logicware, Inc., of Canada.
This, although highly portable, had a
nonstandard syntax, was not as fast as
Quintus’s products, and was not as successful.
An independently developed European prod-
uct from BIM also has a nonstandard syntax,
but is fast, and its popularity is growing in the
U.S. Other products are available, including
ALS Prolog (an outgrowth of the continuing
research in logic programming at Syracuse
University), Prologs from IBM (PSC, Walker),
and a variety of implementations for personal
computers.

In the U.S., Prolog has received increasing
attention since Japan adopted it as the
language for its Fifth Generation Project
(Warren, 1982). This adoption is of compara-
ble importance to the work of Kowalski,
Colmerauer, and Warren.

Appendix C describes Prolog compiler
selection for CMLP.

2.6.2 THE CONCEPT OF PROLOG. Prolog
was developed to provide a conceptual level of
representation that follows directly from
logic. It uses the language of predicate
calculus that was created by philosophers to
investigate valid forms of inference about
things and concepts. Philosophers have used
predicate calculus to develop simple ways to
represent things and their properties. These
concepts were adopted by Prolog and are not
available in other languages.

Prolog is by its nature declarative. It was
designed to allow the user to declare facts that
can then be used to support strings of
inferences without the necessity for the
programmer to define the ordering of the
inferencing. Implementations of Prolog do, in
fact, employ some interesting sequential
approaches in that the comma structures in
clause bodies are examined from left to right,
and the clause orders within procedures are
examined top down. However, a major issue in
constructing Prolog tools is to maintain the
natural extension to parallel implementa-
tions that is allowed in a declarative
language.

Prolog allows first-order inferences directly
within the language itself. Built-in metalogi-
cal predicates provide some capability to
support second-order inferences, since terms
can be constructed, destroyed, and modified.
The two built-in predicates, “assert” and
“retract,” are nonlogical in that these may
destroy the logical nature of the computation
by modifying the axiom set in the middle of
the proof There are built-in predicates, such
as file manipulation, that provide capability
above the natural logic flow of Prolog.

While logic programming provides a strong
basis for accomplishing conceptual modeling,

31~

pure logic programming cannot be used in its
natural form. This is because the utility of
conceptual modeling revolves around the
ability to make trial changes in the database;
this requires an extension of Prologto prevent
destruction of the logical base and, in the
process, prevent the changes from being
reversible. However, we have been able to
overcome this quite easily within CMLP by
calling assert and retract within a procedure,
allowing them to be undone, and we have
shown that the logic programming provides
many advantages to the development of
conceptual modeling, as discussed in the next
section.

2.6.3 ADVANTAGES OF LOGIC PRO-
GRAMMING. Logic programming offers many
built-in advantages to accomplish implemen-
tations of logic models. Major advantages
include the following. Section 5.1.2 describes
how well we were able to achieve these
advantages in the CMLP demonstration
system.

1. General Record Structures. Prolog
provides no type restrictions on the fields
within a clause except as implemented by the
programmer. In addition, the programmer
may use any number of record types without
prior declaration, with any number of fields
within the records. This is an important
concept in logic programming because it
allows the knowledge basis to evolve and
provides built-in flexibility for growth.

2. Built-In Pattern Matching. The concept
of logic programming is based upon a general
and powerful pattern-matchingfacility that is
used in goal-directed inferencing. This means
that the usual selector and constructor
functions for operating on structure data are
not required with Prolog. Procedures for
pattern matching are no longer required since
Prolog operates primarily in a declarative
mode.

Prolog programs are composed of a set of
definitions, each of which is an ordered set of
Prolog terms. These terms either describe
things such an entities or facts, or describe the
relationships or rules between things. The

Prolog interpreter works by accepting a query
of the form “Does an X exist?” and trying to
find a path through its facts to X. The
response is Yes if a path is found, No if a path
is not found. Note that this does not disprove
X, but only establishes that there are
insufficient facts within the database to
establish X. In this process there are no
instructions about what to do or what to do
next. The code consists only of descriptions of
things that exist and the relationships
between them.

3. Multiple Inputs and Outputs. Prolog
procedures may have multiple inputs and
multiple outputs. Not all inputs need be
specified within a procedure execution. There
are no fixed commitments to input and output
variables, and the arguments of a procedure
need not be defined in advance, but may vary
from one procedure call to another. This
allows a single procedure to act as a
constructor, selector, comparator, or a
combination of the above functions, depend-
ing upon the particular invocation. '

4. Both Declarative and Procedural
Readings. The language has developed to
allow program and data to be identical in
form. Therefore the language is completely
neutral in terms of procedural vs. declarative
representations. The CMLP design process
uses procedural steps as well as declarative
representations.

5. Intensional and Extensional Data.
Prolog also represents intensional and
extensional data uniformly. (By an exten-
sional definition we mean one in terms of
facts; by intensional, one in terms of rules.) In
defining a procedure, the user has the
flexibility to decide what these terms are to
mean for a set of clauses or whether
intensional or extensional data forms are to
be used at all.

6. Separation of Logic From Control.
Within Prolog, a set of clauses defines the
relationships between input and output
arguments but does not specify how to
compute the outputs from the inputs. The
control function is the province of a

-32-
e

separately defined deduction mechanism. The
Prolog interpreter provides a default for this
mechanism of evaluating clauses in a simple
top-down, left-to-right fashion, so that for
each matching consequent, the first defining
clause is used. This provides a clear
separation of algorithm and control, despite
the fact that there is no distinction made
between data and procedure within Prolog.

7. Nondeterminism. The nature of the
control sequence discussed above allows
procedures to be nondeterministic and
generate a set of alternative results. The order
in which these nondeterministic results are
generated depends on the control regime of
the language as discussed above.

8. The Logical Variable. Logic program-
ming allows a unique treatment of program-
ming variables. A variable may remain
unbound as long as necessary or convenient.
In fact, the variable may not be instantiated
until after the computation. Unbound
variables may be passed onto procedures and
returned from procedures. Unification not
only instantiates the variables, but identifies
any remaining unbound variable. When one
variable receives a value, all variables that are
specified by it also receive the value.

This treatment of logical variables incorpo-
rates the functions associated with assign-
ments and references in other languages,
without the complication of the semantics
that are needed in those languages. A second
major advantage is that the programmer does
not have to make assumptions about the
current instantiating of the variable in order
to write correct code.

8. Natural Interface to Database Manag-
ers. The utilization of logic programming
within knowledge base management systems
and their interface to traditional relational
database management systems is a very active
research area. Much of this work focuses on
use of logic programming based upon
predicate calculus to represent these knowl-
edge variables.

10. Conceptual Level of Representation.
Logic programming is based on the language

of predicate calculus to allow valid forms of
inferences about things and concepts. This
uses the simple mechanisms of predicate
calculus to represent things and their
properties so that the logic programming
language provides the capability to prove
statements mathematically. This optimizes
implementation of logic variables within the
language without having to build a pattern
matcher, as is necessary in other languages.

2.7 APPROACHES OTHER THAN LOGIC

PROGRAMMING

2.7.1 LISP. Logic programming provides
only one of the possible environments for
conceptual modeling; indeed, the earliest
work on the pertinent issues was done in Lisp
(Feigenbaum, 1977) or in a system written
in Lisp (see Section 2.7.2). This section
describes Lisp and the facilities afforded by
Common Lisp, a representative modern Lisp
environment.

The Lisp environment has expanded
considerably from its first design by
- McCarthy and his students at MIT in the late
1950s. Originally, . Lisp’s most important
feature was that it was a symbol-processing
language in which the code could be used as
data by procedures. This alters programs to
 manipulate its own code: a program could
rewrite itself. After Lisp had been in use for
some months it was noticed that it was similar
to Lambda calculus in that it attaches an
argument list to a function. This major
feature was not a designed feature of the
language.

Lisp was, and remains, a sequential
language in which there is an implicit
program counter and a default GOTO as the
next statement after each statement. More-
over, it is a functional language in which the
execution of a statement (or, in Lisp parlance,
the valuation of an S-expression), always
returns a result.

Lisp is similar to Prolog in that both are
symbol-manipulation languages in which a
program is capable of rewriting itself. In two
other respects Lisp is the opposite of Prolog.
Lisp is sequential, while in Prolog procedures

~33-

to execute are found by pattern matching
against a readily expansible repertoire, rather
than by naming a single user-defined
function. Usually, the equivalent of a Prolog
pro.edure of several clauses would be a single
Lisp function containing the equivalent of the
Prolog clauses and some conditionals to sort
out the selection. More work must then be
done to develop a Lisp program. Also, while
Lisp is a functional language, Prolog is a
declarative language. While a Lisp function
returns a result (possibly nil), a Prolog match
does not have to succeed completely,
returning the logical variable.

The second major difference between Lisp
and Prolog is data representation and
manipulation. The basic element in Prolog is
the term, e.g.,

father(John,Jack)

The basic element in Lisp is the symbol
(or atom), with its value, property list,
printname, definition and so on. Thus:

(get 'John ’father)
would evaluate to 'Jack if the indicator 'father
on 'John’s property list had previously been
set to 'Jack. ‘ '

The Prolog term and the Lisp atom can be
made 0 represent inany different types of
entities or processes. Such freedom of
expression is required in the research field of
artificial intelligence.

Over the years Lisp has been augmented to
provide an integrated environment for
editing, inspecting, and debugging Lisp code.
Lisp has benefited from much more effort
expended by the computer science community
than Prolog (on the order of three or four
magnitudes).

Common Lisp has recently standardized on
an object-oriented extension called CLOS
(Keene, 1988). This very flexible system
combines features from New Flavors, Loops,
Smalltalk, and other object-oriented systems.
Method selection is based on generic
functions rather than on a message-passing
metaphor (in which method selection is
determined by the data type of the receiving
object). Because generic functions maintain .

the same syntax as a standard function call,
method selection can be based on any of the
arguments in the argument list.

Lisp user interface standards are currently
in a state of flux. There are competing
interfaces from Lisp to Xwindows (CLX, XCL,
etc.), and competing windowing standards
(Common Windows [Keene, 1988], CLUE,
etc.).

2.7.2 KNOWLEDGE ENGINEERING
TOOLS (EXPERT SYSTEM SHELLS). Expert
system shells are computer programs
designed to provide conceptual modeling
facilities. This is in contrast to Lisp and
Prolog, which are symbolic programming
languages of wide applicability; most of the
facilities described above must be built in
these languages if they are to be used for
conceptual modeling. Knowledge engineering
tools differ from language symbolic computa-
tion languages such as Lisp and Prolog in
providing—or, equally, imposing—an addi-
tional layer of structure on top of the language
in which tbey are based. Although Lisp and
Prolog represent styles of computation, they
are like each othér in that the same kinds of
application that are conveniently represented
in one can be (more or less) conveniently
represented in the other. Lisp and Prolog are
artificial intelligence tools. Although “defini-
tions” of artificial intelligence abound, it is
probably useful to contrast artificial intelli-
gence (named in the late 1950s) as an area of
advanced research and knowledge engineer-
ing (named in the late 1970s) as an area of
practical application.

Knowledge engineering is more con-
strained than AI, fewer kinds of processes can
be represented in a program, but they can be
represented with a greater certainty that the
process has been faithfully modeled. Knowl-
edge systems development tools are appropri-
ate when the task is to model a domain
consisting of objects which have specifiable
attributes, and those attributes have values
which may be computed from the values of
other attributes of other objects in the
domain. ' ‘

What is especially characteristic of knowl-
edge engineering is that the derivation of
those new attributes must be as flexible as
possible, so that any rule relevant to the
current situation, or relevant to new data,
must always be available whenever it may be
useful. Languages based upon sequential
activation of a series of instructions, like Lisp
and Fortran, are not inherently suited to this
kind of process; they could be called “go to”
languages, where the default instruction to go
to is the next one. It would not be facetious to
remark that knowledge engineering could be
said to require, in contrast, a “come from”
style of language. In this style, the data
transformations required at any point are
culled from a collection of potentially useful
rules. This is much more like Prolog, where
the memory is searched at any given point for
rules which could satisfy a given objective
(i.e., prove a given theorem).

However, neither Lisp nor Prolog is
suitable fcr knowledge engineering without a
superstructure built on top of the basic
computational methodology they provide.
The collection of attributes, each with their
associated values, that represent a given
object is represented as a collection of Lisp or
Prolog terms. The methods by which the-
values of an object’s attribute may be inferred
from others are called “rules” (which are
themselves represented with minor exten-
sions of the same representations). What the
kmowledge system development too! does is to
provide its user (the programmer) with the
convenience of having to manage the
translation from the top level of objects,
relations, and inferences into the low level at
which the basic computations are performed.
This convenience is important: just as it isnot
cost-effective to have programmers work with
machine code writing a bookkeeping pro-
gram, so it is not cost-effective to have
someone doing knowledge engineering in raw
Lisp or Prolog. Just as one pays the price of a
compiler (and editor) to perform the
bookkeeping and make programmers more
productive, so one pays the price of a

knowledge system development tool to make
knowledge engineers more productive. The
initial costs of creating that environment (and
debugging, maintaining, and enhancing it)
are, essentially, shared by those who purchase
it. What makes it cost-effective is that it costs
less to buy such a complete and reliable
environment than to create one from scratch.

Another characteristic of knowledge
engineering programs—particularly expert
systems—is that they are highly interactive.
They must be able to present visually succinct
indications of aspects of their reasoning, and
provide the user with the ability not only to
examine the line of reasoning, but also to alter
it, direct it, or to change the premises and
reevaluate. An expert system is meant to be an
organic whole, interacting with its user to
purposely satisfy a mission requirement.

A knowledge engineering tool is valuable to
the extent that it makes creation and
-validation of such a system easy, and to the
extent that it makes it reliable and efficient at
run-time. It must be rated as less than
valuable to the extent that it makes these
things difficult to achieve: if it does not
provide a sufficient variety of representa-
tions, if it is hard to decide whether tests are
successful or not, if there are many special
cases (untoward interactions, or even bugs)
that burden a programmer’s mind, or if it is
slow, and hence makes it difficult to work from
our limited short-term memory. It can be
rated as most valuable, the more facilities it
provides, the more salient its visual
representation of data, and the less it requires
the recall and (error-prone) typing of
commands instead of providing recognition
and selection.

One knowledge engineering tool is KEE.
KEE is a frame-based system. Frames (called
“units” in KEE) are structures for organizing
knowledge, similar in many ways to the
programming language concept called “struc-
tures” in PL/1 or C, and “records” in Pascal.
Frames are especially useful for representing
taxonomies. Relationships between frames in
KEE can be member links or subclass links. A

-35-

member link indicates that a particular object
is a member of a class of objects. Subclass
links indicate that a class is a specialization of
more general class.

Frames have slots, which describe various
attributes of the frame. For example, in
defining a frame to represent the class of
automobiles, we might define slots to
represent attributes such as the color,
condition, or cost. Frames allow the
attributes of objects to be inherited. This is a
powerful means of organizing knowledge. If
we added a new slot to the Autos definition to
represent the fact that an auto typically has
four wheels, then when the system discovers
that a Toyota Celica is a type of auto, it can
automatically assume that the Toyota has
four wheels, because this knowledge was
inherited from the Auto class. Frames allow
the definition of new objects as specializa-
tions of other objects that the system already
knows about. Thus, you can define a new
object merely by describing how it is different
from some existing objects. This definition-
by-specialization is a powerful technique for
hierarchically representing knowledge.

In KEE, rule bases can be defined in
addition to frames. In particular, rules can
reason about objects that are represented as
frames. Frames excel at defining objects and
their attributes. Rules and Lisp procedures
are better at describing behavior. In KEE
frames, rules and Lisp procedures are
smoothly integrated. Rule bases and Lisp
code can be attached as a slot in a frame.
This kind of knowledge allows for a power-
ful programming paradigm: object-oriented
programming.

A method is a Lisp procedure to support the
object-oriented paradigm. It is invoked
whenever a message is sent to a frame,
requesting the value of one of the frame's
slots. Methods can also invoke rule bases
when necessary. Also, a procedure or rule base
can be attached to a frame as an active value;
that is, it can be invoked whenever the value
of that slot is accessed or changed. Let us
consider a resale-value slot of our hypotheti-

cal Autos frame. Since the resale valueof a car
decreases over time, instead of simply
assigning a value to this slot, a Lisp procedure
can be attached which takes into account the
make and model of the car, as well as its
optional accessories, and calculates the
current resale value.

KEE is unique in that its rules are normally
implemented as frames. That is, a rule is
simply a frame with slots for conditions,
conclusions, external forin, justification for
rule, rule author’s name, etc. Different rule
bases can then be created as classes of rules.
This modularity makes it easier to create and
debug the rules.

Attributes in KEE are of two basic types.
“Own” attributes describe attributes of the
class itself. The class Trucks, for example,
may have slots for the longest and heaviest
known truck. “Member” attributes describe
the attributes of each member of the class.
Thus, each particular instance of a truck will
have a length and weight. More formally, each
frame inherits the “Member” attributes of
classes of which it is a member, and these
attributes become that frame’s “Own”
attributes.

In KEE, each slot in a frame has both a
sardinality and a value class. The cardinality
describes how many values that slot may
have. For example, the sister slot for the Jo-
frame may have a cardinality of two. The
value class describes the class that each
permissible value is in. In this way we can
describe the legal values of the decent-
professional-man slot as either a doctor or a
lawyer but not George.

KEE’s rules provide both forward and
backward chaining, and are tightly integrated
inte its truth maintenance system,
Keeworlds. Keeworlds is used to represent
projections of hypothetical worlds. In other
words, whenever one of several possible
situations may be occurring, one can
maintain each hypothesis inside its own
hypothetical world. One can follow separate
lines of reasoning inside each world, and
probability estimates of the likelihood of each

-36~

possibility can be maintained. After some
arbitrary amount of reasoning, a decision can
be made which hypothesis to accept.

High-end system tools such as KEE provide
sophisticated rule tracings that show not only
which rules are executed and in what order,
but also the pattern matchings—that is, the
particular information from the domain that
was utilized by that rule. By presenting this
information in a nicely formatted way, the
system can provide explanations of its
reasoning that correspond to each step in a
logical train of thought that the analyst
himself might typically use. The really
powerful tools such as KEE go beyond this by
keeping detailed information on the justifica-
tion for each deduction that the system
makes. This information is stored in a truth
maintenance system. This facility is critical
whenever the system must make deductions
based on assumptions which later turn out to
be faulty. Suppose, for example, that the
system makes some deductions about possible
tracks based on assumptions about the
maximum speed of a MIG aircraft. Suppose
later that the system is told that thereis anew
model of MIG which is significantly faster.
Using the truth maintenance system, the
system can reexamine all deductions it made
based on its faulty assumptions, and can
automatically retract faulty conclusions it
may have reached.

In summary, the preliminary mapping of
KEE features to problem characteristics
demonstrates the power and utility of the
tool. We visualize utilizing frames to
represent hierarchies of concepts such as
aircraft characteristics or maneuver catego-
ries, using object-oriented techniques to
implement the algorithmic portions in a way
that makes continual system modification
easy, and using rule-based reasoning to
emulate the judgmental reasoning of the
analyst.

2.7.3 COMPARISON OF ALTERNATIVE
IMPLEMENTATION TECHNOLOGIES. In
Section 2.6.3 many advantages of logic
programming were identified. A disadvantage

of Prolog is its immaturity and lack of
development environment. However, the tools
that are being developed in Prolog are being
designed to supply a large number of built-in
capabilities, as shown in Table 2-1. A few of
the built-in capabilities are natural from the
concept of Prolog, such as the capability of
Prolog to support goal-directed inferencing.
Other capabilities have been built into
Prolog, ProTALK, and ProWINDOWS since
they are relative recent developments and are
benefiting from experience in development
systems for other languages.

The knowledge engineering tool, KEE,
provides a tremendous set of built-in
capabilities for implementing conceptual
mcdels. The cost of these built-in capabilities
is some inefficiencies, as well as the cost of
procuring KEE. Table 2-1 suggests that there
may be a tremendous payoff for development
of a knowledge engineering tool for concep-
tual modeling in Prolog as was realized by the
KEE development in Lisp. Section 5.1.4.2
analyzes the potential to apply metaProlog to
CMLP; this would provide an equivalent of
Keeworlds.

Table 2-1. Comparison of Built-In Capabilities for Candidate Implementations

Prolog Augmented
With ProTALK and
ProwINDOWS

Prolog

Lisp Augmented
with Comm
Lisp Windows and CLOS KEE

Object representation

Hierarchical
Attached procedures {(methods)
Knowiedge representation

interencing

Hierarchical

Goal directed X
Data directed

Value based

Truth maintenance

User interface

Windowing

Graphics tool kit
Development environment

Rule breakpoints X
Object inspectors
Single step and trace X
Hierarchy display

49-05- “7a

~37-

>
> X XX XXX X X X

X X X X

3. C2 MODEL DEVELOPMENT THROUGH CMLP TECHNOLOGY

This section presents the design concept and
models for a CMLP tool. Section 3.1 describes
the goals of the tool. Section 3.2 presents the
overall design and discusses a large number of
candidate conceptual representations of C2
systems; a subset of these models was selected
for implementation in a demonstration sys-
tem as discussed in Section 4. Sections 3.3 and
3.4 describe user interface, data control, and
usage concepts.

3.1 GOALS OF THE MODELS

The original purpose of the CMLP project was
to investigate the use of conceptual modeling
for a complex domain: the design process for
C31 systems. A secondary goal was to identify
ways in which conceptual modeling could use
logic programming to benefit C3I system
designers. We addressed these goals by gener-
ating a design concept and models for a tool
for use by C* designers. We excluded support
to communications and intelligence systems
designers to bound the problem and to allow
us to work in an unclassified mode.

We began by 1dent1fy1ng five classes of
potential users of a C2 conceptual modeling
system, as follows:

1. Technology Development Agency.
This class of user, exemplified by RADC CO,
performs technology development that may
support one or a variety of C2 missions. This
user needs to understand both the require-
ments for and payoffs of each technology.

2. Command and Control Acquisition
Agency. This user, such as the Air Force Elec-
tronic Systems Division or Space Systems
Division, develops a specific C? system. This
user needs information only about the specific
system, but may be able to use data on other
systems as a source of concepts for the system
of interest.

3. Mission User. This class of user, exem-
plified by TAC, SAC, or U.S. Space Command,
defines the mission element need statement
for a particular system. This user typically
needs to perform only a high-level analysis.

4. Funding Control Agency. This user, for
example AFSC, OSD, JCS, or Congress, is

-39~

attempting to prioritize the variety of defen-
sive missions and the developments required
to support them. This user requires high-level
comparative data for C2 systems and may
have to consider response strategies and
defense posture.

5. Operating Agency. This user, such as
TAC, SAC, or NORAD (Air Force Space Com-
mand), provides day-to-day operation of a C*
system and requires a detailed understanding
of the system and its performance capability.

From this set we elected to concentrate
upon the first two user classes. The broad
class of end-mission user may be able to bene-
fit from the CMLP model and was considered
in the design process. The funding control
agencies require comparisons between sys-
tems, which may be feasible through exten-
sions of CMLP technology. The operating
agencies require very detailed knowledge of
the C2 system and were given second priority
for the purpose of the design study.

We next identified the following 18 goals
that CMLP should fulfill in supporting pri-
mary and, to a lesser extent, secondary C2
design system users. Italics indicate the users
each goal supports. Section 5.2 evaluates
achievement of these goals by the CMLP
design (presented in Section 3.2).

1. Allow all users to analyze perform-
ance of defensive system by rule-of-thumb
computation.

2. Allow all users to analyze performance
of defensive system by interfacing with a sys-
tem simulation.

3. Allow all users to analyze C2 capability
using a goal-scoring approach.

4. Allow technology developer or C%acqui-
sition agency to analyze C2 system capacity
constraints.

5. Allow all users to analyze C2, commu-
nications, weapons, and sensor system life-
cycle costs.

6. Assist all users by identifying related
effects in other models of changes to one por-
tion of the model.

7. Assist all users by defining options
based on similar situations in the knowledge
base.

8. Assist all users by evaluating effect of
changes based on similar situations in the
knowledge base.

9. Assist all users by identifying design
features incorporated solely to satisfy
a requirement whose change is being
contemplated.

10. Assist all users in organizing and
understanding data while entering data into
the CMLP knowledge base.

11. Assist all users in identifying the data
needed to support the design process.

12. Assist all users by locating the same or
similar data from knowledge bases associated
with other baselines. :

13. Assistall users by performing data con-
sistency checking, either automatically or on
demand, against its own knowledge base.

14. Allow technology developer, C? acquisi-

tion agency, or mission user to qualitatively -

and quantitatively evaluate the effect of a
weapons, sensors, communications, or C2
design change to an existing C? system.

15. Allow technology developer or C2acqui-
sition agency to comparatively evaluate weap-
ons, sensors, communications, or C? design
changes within a system.

16. Allow technology developer, C? acquisi-
tion agency, or mission user to evaluate
expected C? system performance.

17. Allow C2 aequisition agency to evaluate
stepwise deployment strategies.

18. Allow funding control agency to com-
paratively evaluate design changes across dif-
ferent systems.

To define potential models for the assumed
users we next examined the processes and
data currently used. We attempted to distin-
guish between cognitive models (representing
a user’s perception of a system) and domain-
dependent models (more or less realistically
representing features of the system). We
found considerable inaccuracy in the descrip-
tion of C2 systems, with the consequence that
information entered in a domain-dependent

—40-

model may, in fact, be inaccurate or based
upon prejudices of one particular type of user.
The distinction between cognitive and
domain-dependent system models is therefore
blurred, and we did not consider it to be of sig-
nificance or utility.

The many alternative conceptual models we
identified are summarized in the following
two sections. We screened these models on the
basis of practicality: whether or not we could
identify the contents of the model and appro-
priately populate it (at least on paper) in order
to evaluate its utility. Also, overlap allowed
some degree of collection and combination of
models. Table 3-1 indicates how the imple-
menting models respond to the 18 design goals
and provides references to the sections
describing the conceptual and demonstration
system model designs. Section 5.2 evaluates
the ability of the CMLP design to satisfy each
of the 18 goals.

3.2 THE CONCEPTUAL
REPRESENTATION OF COMMAND
AND CONTROL SYSTEMS
This section describes the models selected for
representation of command and control sys-
tems. These models are shown in the overall
design context in Figure 3-1. Most of them
provide the conceptual representation of C2
systems. Two of them—the analogy develop-
ment and system sensitivity models—help in
using the conceptual representations. The
user interface and meta-manager models are
described in Section 3.3.

3.2.1 DESCRIPTION MODEL. The descrip-
tion model characterizes the large system in
which the C2 system is embedded. It includes
descriptions of the C2 system, the sensors and
weapons, and the threat.

A major design concern was the level of
detail needed: detailed information may
become a burden to generate, maintain, and
use, whereas high-level information may not
meet the needs of all users. It therefore
appeared important that the description
model be constructed to provide an adaptable
level of detail. We considered two options.
Option A would identify levels of data needed

Table 3-1. Implementing Models for CMLP Design Goals

Conceptual Demo System
Implementing Model Design Model Design
Design Goal Model Reference Reference
1. Analyze performance by computation Swat 3.24 412
2. Analyze performance by simulation Simulation interface 3.23 *
3. Analyze C? performance by goal scoring Goal attainment 3.25 414
4. Analyze C? capacity constraints Capacity
5. Analyze systemn life-cycle costs Cost 3.23 *
6. Identify effect of changes in other parts of
system System sensitivity 3.28 4.1.5
7. Define options based on similar situations Analogy devel 3.29 *
8. Evaluate options based on similar
situations Analogy devel 3.29 *
9. |dentify requirements design dependence Req & design trace 3.22 *
10. Collect data Description 3.2.1 4.1.1
11. Identity needed data Description 3.21 411
12. Provide data from knowiedge bases Meta-manager 3.3.2 422
13. Check data against own knowledge base = Meta-manager 3.3.2 422
14, Evaluate change to system All models - -
15. Compare changes to system All models . - -
16. Evaluate C2 performance All models - -
17. Evaluate deployment strategies All models - T =
18. Compare design changes across
systems All models - -

*Not included in demonstration system
$9-11-088

to support specific analysis element (the
SWaT model [Section 3.2.4]) may ignore range
effects [no position data], operate on range
bins, or accurately model range if positions of
sensors, weapons, and threat are provided).
Option B would allow the user to select
(reduced) information input, and provide
warnings and abort analysis where detailed
information is not available.

Another design concern was how to model
the interactions between elements. In this
area we chose to describe the performance of
sensors, communications, and weapons based
upon their interaction with the threat (con-
sidering the impact of the physical environ-
ment in the process), and to describe the inter-

~41-

action between C2 and the sensors and
weapons in terms of messages.

The interactions to be modeled can become
very complex. In air defense, for example, it
may be necessary to scramble an aircraft so
that the crew can complete the identification
of a detected object; thus the crew is function-
ing as a special form of sensor. If the rules of
engagement allow the crew to make the
engagement decision, the crew is acting as a
C2? element. After the engagement decision (by
the crew or by interaction with higher author-
ity), the same on-board sensor systems
(including the crew) used in surveillance may
be employed as part of the weapon delivery

*Stored as part of baseline knowisdge base
$9-03-128¢

Raquirements- s&wlLce
to- Design 2
T Dilh C2 Sysam
Knowledge ucanl:".
Base’

Figure 3-1. CMLP Design Concept

process; hence the crew is now functioning as
part of the weapons system.

For the definition model we chose to follow
the standard approach for defining C? sys-
tems, i.e., defining the functions associated
with surveillance (or sensing), CZ, and weapon
and weapon delivery and implementing these
functions with basing on the appropriate
platforms.

3.2.1.1 Threat Modeling. Defensive sys-
tems are developed to address specific, direct
threats and may be characterized as space
defense, air defense, surface naval defense,
antisubmarine warfare defense, ground force

-defense, and ballistic missile defense systems.

Counterforce defensive systems are those
having the capability to defend by striking the
enemy in his own backyard: on airfields before
takeoff, in ports, in depots and support eche-
lons, or on the launch pad. We chose to con-
sider these counterforce activities as belong-
ing in the offensive mission area.

In addition to the direct threat elements,
another type of threat is that which may have
been created to interfere with the defensive
system. This threat includes jammers and
spoofers, sabotage forces, and other elements
that may either destroy or impede the func-
tionality of the defensive systems. This type of
threat is of particular importance to C? sur-

—42-

vivability in that defensive systems tend to
have fewer C2 nodes than either sensors or
weapons.

Another characteristic of *hreat is that a
particular threat platform may serve as a
launch vehicle for multiple numbers and mul-
tiple types of threats: a ballistic missile may
deploy MIRVs, or an aircraft may deploy
cruise missiles or bombs. In general, threat is
described by threat carriers and their arma-
ments. A particular armament (missile, bomb,
reentry vehicle, etc.) may have different types
of warheads, which can greatly change the
nature of defense. Warheads include chemical,
nuclear, and conventional and vary in their
damage potential (yield).

Also of concern is how the threat may be
employed. In defensive system design, the
threats to the system itself are typically
described in terms of the number of threats
believed to be available in the enemy’s inven-
tory. To evaluate a defensive system, informa-
tion on how these threats may be deployed,
i.e., a threat scenario, is needed.

The following summary indicates elements

that must be included in a threat description. -

Many of these elements may not be required
for a specific level of detail being considered.

e Threat Bases. This includes launchers,
threat bases, and operating areas for naval
forces and may also include storehouses of
reconstitution supplies.

e Threat Carriers. This may include ships,
aircraft, missile launch vehicles, etc.

e Numbers in Inventory. This information
may be characterized for each base and threat
carrier.

e Location. This may be by base or by a
physical location of a threat carrier in transit.

e Status. This may include information on
the operational status and potential of the
threat element, the number of armaments it
still carries, or other pertinent data to the
defensive system.

e Type and Model Number. This oftenisan
index to further descriptive data such as the
characteristics and armament following.

—43-

e Characteristics. This may include infor-
mation such as range, velocity, detectability,
etc.

s Armament Type. This typicall; aescribes
the armament released from a particular
threat carrier such as a bomb, reentry vehicle,
cruise missile, air-to-air missile, etc.

e Armament Lethality. This describes the
probability of damage of the particular
armament on the assets being protected by
the defensive system.

e Armament Deployment Ranges. This
describes when the threat platform may
deploy a particular armament against the
target.

e Armament Numbers and Capabilities.
This may describe the armament as having
multiple warheads, its velocity and range, its
capability to detect and close on its own
target, and its maneuverability.

e Other Threats. This includes the poten-
tial for the enemy to employ sabotage, use
SPATNAEZ, penetrate security, jam or spoof
defensive sensors and weapons, provide
forward observers to support threat delivery,
etc.

3.2.1.2 Sensor Modeling. Sensors support
two principal functions within a defensive
system: surveillance and intelligence. We did
not explicitly consider sensors used for
weapon delivery control unless they could also
originate reports generated and forwarded to
C? to be included in the surveillance fusion
process. In most systems individual sensors
perform this surveillance function, with their
data collected, combined, and analyzed within
the C2 system. Some systems include a group
of sensors that operate together and fuse data
that are then reported out to the C2 system for
fusion with other sensor groups. The surveil-
lance sensors may have a secondary mission:
detecting our own system's weapons and pro-
viding a means to report their performance
back to the C2 elements.

Sensors employed by the intelligence func-
tion are designed to learn about the nature of
the enemy’s threat (i.e., collect technical

intelligence) and to collect information that
can be used in analyzing his activities and
intentions (indications and warnings). It is
cfien convenient to !mmp intelligence I&W
sensors with surveillance sensors.

Sensors may be passive or active. Passive
sensors detect emissions/reflections from the
target. They include optical sensors that view
the target or some of its characteristics and
emission sensors that detect the communica-
tions or active sensing emissions from a tar-
get. Active sensors—the most common is
radar—interact with the target and sense the
product of the interaction. A ladar system is
one in which a laser operates in conjunction
with a passive sensor. Ladars and passive opti-
cal sensors may operate in the visible, infra-
red, or ultraviolet ranges.

Sensors may be earth based, space based, or
platform based on sea, earth, and air plat-
forms. Sensors are described by their location,
number, type and model, performance against
different targets, the extent to which perform-
ance is affected by environmental or enemy
threat elements, sensor sampling rates, sen-
sor reporting rates, and coverage areas and
limitations. Performance measures include
probability of detection, probability of track-
ing, probability of discrimination (or appro-
priately distinguishing between threat ele-
ments and friendly forces, and between threat
elements), and probability of kill assessment.
These performance characteristics nearly
always depend on the range to the threat, the
environment, and the presence of jammers, as
well as on the characteristics of the threat.

3.2.1.3 C31 Modeling. The element under
study may require significantly more descrip-
tive detail than the other elements. The
description may need to include interactions
between elements (such as hierarchy),
detailed functionality, basings, figures of
merit, rules of engagement, executing and
reporting rates, and characteristics of inter-
nal choke points.

For the CMLP tool, data obtained through
technical intelligence (or the lack thereof)
may be considered in terms of the effects on

sensor and weapon system performance (or
uncertainty concerning performance). This
information is not directly treated. I&W intel-
ligence sensors are also not explicitly
included, but may be considered by including
them in the sensors model.

For analyzing multiple systems, or using
one system to analyze another, it is important
to describe their C2 functionality in similar
terms. This requires definition of a common
functional organization that is a superset of
the functions performed by any C¢ system
included in the analysis. We have not
attempted this definition.

Performing survivability analysis will
require information on each CZ node’s resil-
ience to threat. Performing C? design analysis
will require design details on operator sta-
tions and responsibilities, the numbers and
capabilities of processors, the allocations of
functions to processors and operators, the
rules of engagement employed, the expected
accuracy achieved by sensor fusion, and the
control steps needed for the particular sensors

and weapons employed. -

Finally, C2 evaluation may also require con-
sideration of defensive approaches other than
engaging the threat, for example:

e Passive techniques such as camouflage

e Capability of reconstitution such as
repair of a landing strip

e Active countermeasures such as EECM

e Deployment strategies such as mobility,
maneuverability, or proliferation

e Physical protection such as use of a
hardened facility or radiation-hardened
components

3.2.1.4 Weapons Modeling. Performing
C? analysis will generally require descriptive
information on the nature, basing, and
expected performance of all system weapons
against each threat type. Most systems will
have multiple weapon types. Some weapons
will require only minimum C2 support, while
others will require detailed control proce-
dures during the engagement sequence. Some
missions will allow employment of additional
weapons if it is determined that a weapon can-

—44~

not effectively complete its mission (shoot-
fail-shoot) or has missed its target (shoot-
look-shoot). Weapons may be described in
terms of their current basing, status, velocity,
range, susceptibility to attack by the threat,
and the numbers and types of armaments
included. Armaments may include the shells
for a gun, reloads for a missile launcher, mis-
siles on an aircraft interceptor, or capabilities
for multiple shots in directed-energy weap-
ons. Most C? analyses require the expected
lethality of the weapons, and the weapon sys-
tem conceptual models may need to include
the accuracy to which lethality is known.

3.2.1.5 Physical Environment Modeling.
The need for environmental data in C2 system
modeling depends on both the desired model-
ing detail and the sensitivity of the sensors,
weapons, communication, and C? elements to
environmental effects. Most users of concep-
tual models can probably ignore environ-
mental considerations. Where the environ-
ment is of concern, environments of interest
may include nuclear effects, wind, rain, cloud

-cover, solar and lunar effects, and terrain. For

C? processesWhat calculate sensor or weapon
performance based upon the weather or other
environmental effects, it may also be neces-
sary to include in the environmental model
the accuracy to which the environment is
known.

3.2.2 REQUIREMENTS AND DESIGN
TRACEABILITY MODEL. The requirements
and design traceability model makes it possi-
ble for the user to understand the history of a
system design. The need is very well illus-
trated by an example provided by Mr. Sam
Di Nitto. Extra-large wheels and an engine
inlet covering were provided to allow the
F-111 to land on packed sand. This landing
requirement was dropped without changing
the design, and subsequently the F-111 both
experienced accidents due to misperformance
of the covering and suffered an extensive pen-
alty due to the size and weight of larger tires.

We note that a model that provides require-
ments traceability into the design of a par-

ticular system is also an effective indicator of
system sensitivity (see Section 3.2.8).

3.2.3 COSTMODEL. In theory cost and per-
formance can be used independently to deter-
mine the appropriate balance of sensors,
weapons, and C2 capabilities purchased. In
practice, however, it is very difficult to sepa-
rate cost and performance trade studies. The
use of conceptual modeling should improve
the ability to focus on cost and performance
issues and separate one from another.

Cost modeling requires consideration of all
elements of life-cycle costs. For example, sys-
tem design changes may be made solely for
their life-cycle cost benefits, without provid-
ing any functional (performance) benefits.
This situation can arise when, as is often the
case, a military system is technologically
obsolescent by the time it is deployed. Using
such a system requires a source of spare parts,
and perhaps a source of new components for
proliferation. If the technology for producing
these parts is commercially obsolescent, the
Government will incur extremely high costs
in paying for the maintenance of a manu-
facturing capability. Of course technology
advances may also allow one element to do the
work previously accomplished by many. This
is particularly true in computers, for which
orders of magnitude improvement in capabil-
ity per dollar occur in just a few years.

3.2.4 SENSORS AND WEAPONS
AGAINST THREAT MODEL. The SWaT model
provides a rule-of-thumb estimate of how well
the defensive system does when a particular
threat is sensed by a particular surveillance
system and a certain number and capability of
weapons are applied to engage the threat. The
performance of most defensive systems
depends upon the physical location of the
threat, sensors, and weapons, which requires
a geographical mapping of all elements for
high accuracy. A temporal analysis of the
physical locations may be required to achieve
a certain accuracy for a particular type of sys-
tem. At the highest level of complexity, a

—45-

SWaT model may in fact represent a simula-
tion of the threat, weapons, and sensors.

We originally included the SWaT model
solely to indicate how well the defensive sys-
tem would perform under ideal conditions,
i.e., ignoring the effect of less than perfect C2.
We found that with a minimum amount of
effort a rule-of-thumb SWaT model can also be
used to aid in evaluating C2 defensive rules of
engagement. This is done by using simple
rules to determine threat priorities, and by
varying the assignment rules of classes of
weapons against classes of threats. If this
information is provided at a very high fidelity
with consideration of temporal effects, the
SWaT model becomes a simulation that
includes the simulation of the C2 elemer:s.
Most weapon effectiveness simulation models
do not include C2 effects.

3.2.5 GOAL ATTAINMENT MODEL. The
goal attainment model was suggested by the
fact that it is part of the human cognitive

process to try to estimate how well a particu-

lar function is performed. The goal attain-
ment model generically identifies specific
things-a C2 system should be able to do; these
may then be tailored to a specific C2 applica-
tion and evaluated. This type of evaluation is
typically done by simulation.

Use of goals in this way in problematic in
that there are many goals rather than one
measure of effectiveness, or at worst a few
such measures. This problem makes compari-
son very difficult. Work may be needed to
define aggregate measures.

3.2.6 CAPACITY MODEL. The physical
design of a C2 system involves a large number
of capacity limits in the areas of communica-
tions, input and output, computer processing
speed and memory capacity, the capability of
the human operator to perform manual opera-
tions, and the capabilities of the data inter-
change between the human and the auto-
mated C? system. Most are limitations in the
number of activities that can be done over
time, with the consequence that evaluating C2
system capacity typically requires a temporal
analysis.

‘A capacity model can be created for any sys-
tem element by modeling the total system
capacity and the capacity consumed by each
function the element performs. The capacity
consumed by a function is usually determined
by the number of threat, sensor, and weapon
elements involved. When a function is distrib-
uted across multiple system elements, it has
both location and temporal properties.

Capacity modeling is typically done in the
more detailed simulation models.

3.2.7 SIMULATION INTERFACE MODEL.
Most detailed analyses of C2 systems are per-
formed exclusively by simulation. Simulation
studies can provide much of the data needed
within the CMLP tool, such as specific goal
evaluations and calibration for the SWaT
model. Simulations may also be used to evalu-
ate system sensitivity, and they may be
required to determine the detailed costs.

One use of conceptual modeling may be in
defining the minimum number of simulations
required, and the elements to be varied from
simulation to simulation, to evaluate a par-
ticular issue. With the addition of a simula-
tion interface model, a user may initiate an
investigation through the CMLP tool. The
CMLP tool may identify information needed
to complete that investigation, create a series
of simulation experiments to evaluate that
information, cause the simulation to execute,
and then take results and incorporate them
within the CMLP evaluation.

3.2.8 SYSTEM SENSITIVITY MODEL. We
found that most C2 systems are evolutionary,
and that new concepts are generally defined
by considering small performance changes in
a variety of different functional areas. The
CMLP tool should therefore include a system
sensitivity model to help the user identify the
effect of a particular change on the other ele-
ments represented wi.hin the model struc-
ture. The model should be capable of assisting
the user in two ways. The first would aid in
investigating a change to a C? system or the
defensive system of which it is a part by pro-
viding pointers to other areas that need to be
investigated (i.e., identifying areas affected by

—46~

a discovery that the enemy is manufacturing
more threat elements, or by changes in our
own weapons, or by changes in C? design con-
cents). The second would aid in finding ways
to produce a desired performance improve-
ment by suggesting C? or defensive system
design changes (i.e., generating and evaluat-
ing concepts to increase performance in a spe-
cific situation through use of more or better
sensors, data fusion in C2, or faster-response
weapons).

3.2.9 ANALOGY DEVELOPMENT MODEL.
The analogy development model allows the
user to benefit from data stored in knowledge
bases describing other baselines within the
CMLP system. We envision two applications
of analogy development. The first allows the
user to search knowledge bases for system
changes to respond to some undesirable condi-
tion such as an unsatistied goal, an inability
to counter threat, or limitations in C2 func-
tionality. The second aids in performing
evaluations or securing other data. If the user
needs but does not know the cost of maintain-
ing an F-15, he may be able to estimate it
based on support costs of other aircraft con-
tained within knowledge bases describing
other baselines. If the user needs to evaluate
how well a particular goal is fulfilled, he may
search other knowledge bases for a similar C2
system that performs the relevant functions
in the same manner. In this case the user
would define the relevant functions using the
system sensitivity model.

3.3 CMLP DESIGN CONCEPT

The previous section described the models
representing or allowing the user to act on the
representation of the C“ system. This section
describes what holds the CMLP design
together: a very capable user interface and a
meta-manager to handle program linkage and
the knowledge bases as they are changed
under user control.

3.3.1 USER INTERFACE. The CMLP
design concept involves use of a large number
of distinct but interrelated models. A typical
user session will involve changing the data in
two or more models and evaluating the effects

through a variety of other models. To do this
the user needs to be able to move from model
to model in a straightforward and convenient
fashion.

Our CMLP design concept employs a pow-
erful windows package as the basis of the user
interface. The package includes a high-level
menu bar for identifying the area of the model
in which the user wishes to work. A form for
that particular model is accessed and popu-
lated with data from the knowledge base. The
user may accept or modify these data, in most
cases moving from the original form to other
forms for this purpose or to evaluate the data.
To implement the user interface, two logical
functions are performed as distributed func-
tions based upon exteusive use of the windows
package. One function, the presentation man-
ager, accepts mouse clicks and keyboard
entries and interprets this input based on the
status of the form or menu being displayed
and acted upon. The presentation manager
also generates new outputs to the user when
so commanded by previous i.~nuts.

The second major function is the session
manager, which augments the presentation
manager by recording in a session state
kmowledge base the status of the user and sys-
tem dialog. The session manager maintains a
reference of the display structures being used,
the current selections being acted on, and the
current sets of selections available, It allows
the user to personalize the interface to his
own requirements via a user knowledge base
describing his interests and capabilities. This
concept may be used to control user data
access and change privileges. The user
descriptions may provide a set of information
on the types of modeling he is likely to do, his
prejudices (e.g., sensitivity rules he wants to
have included or ignored), the level of detail
needed within the description model, and
records of previous activity that he may recall
for his own benefit.

3.3.2 META-MANAGER. A meta-manager
provides the interface between the user inter-
face and the system models, controlling the
session to make sure that all functions are

47~

executed properly and in the appropriate
sequence. It controls such items as what data
should be passed, what the detailed state of
the current session manager is, and what the
state of the session is in terms of the baseline
from which the session started, the develop-
ment baseline, and the new baseline. The
meta-manager normally will consist of the fol-
lowing sections:

e Command section to interpret and act
upon the information passed from the user
interface

o Knowledge section to maintain the state
of the knowledge bases being used throughout
the system

e Interprocess communication and control
section to call the system models and pass
data to them

e Context section to maintain the state of
the session, including the forms currently
open to the user

e Help section to respond to user requests
for help by providing information from stored
knowiedge bases
3.4 CONCEPT FOR CMLP USE
This section describes the steps in CMLP
usage (Figure 3-2), assuming that this is the
first time the C2 system of interest is to be
considered for a new mission area. The tool is
already populated with information on other
C2 systems and with generic information such
as generic goals and system sensitivity rules.

The initial step is to provide the tool with
the information it needs to deal with this par-
ticular system. While the bulk of this informa-
tion will be provided to the description model,
other models may need to be initialized in
some way. The capacity model may require
identification of the capacity bottlenecks. The
system goals should be reviewed and updated
for this system, with the user determining
whether each generic goal applies to this C
system and whether there are specific goals
that should be introduced. This system may
also have unique features that cause changes
in the system sensitivity rules. We would hope
that the generic system sensitivity database
would be such that most of these changes are

~48-

—

deletions, because this particular system does
not include that sensitivity. The basic cost
data should be a portion of the description
model. However, the cost formulas, such as
definition of the maintainability concepts,
may require changes in the cost model. The
requirements and design traceability model
may also use the description model or may
require its own inputs. Since each system is
likely to have a unique simulation, the simu-
lation interface may have to be developed if it
is to be used by CMLP. To populate the
description model, the CMLP tool should be
able to refer to data stored in other baselines
to support this baseline.

The second step is to evaluate the baseline.
Performance of the SWaT model will provide
some indication that the sensors, weapons,
and threat data have been entered correctly.
Capacity models may be populated and veri-
fied against the data on the capacity-limited
elements in the C2 system. The user will need
to perform the initial evaluation, in which
process he may draw upon evaluation knowl-
edge databases from other systems.

The remaining steps evaluate possible C2
changes by manipulating the baseline. In the
process of entering the baseline and evalu-
ation data, the user will undoubtedly have
generated some ideas for improving the C2
system. Step 3 takes these ideas and tries
them using the CMLP evaluatior capability.
During this step the user may want to store a
new baseline for the system as the result of
one or a combination of deltas. A typical delta
might be to add a new fusion processor to fuse
data from a variety of sensor systems and
improve the target knowledge. Before a new
baseline can be stored, the user must review
areas of change to the baseline using the sys-
tem sensitivity rules (Step 4).

The user may run out of ideas he wants to
try in this C2? concept design. The analogy
development model may be used (Step 5) to
identify design improvements for any per-
ceived deficiency in the design, such as an
unsatisfied goal. Each change to the C? sys-
tem baseline can be evaluated individually, or

1. Pooulate Conceptual Populated
MOdel Base"ne Baseline

2. Evaluate Baseline Evaluated

Baseline

3. Investigate Deltas (En":t“f‘;jil‘;“
(Suggested by User) evaluated)
Determine Atfected QA Excursion 1
Areas and Secondary (fully
Changes Using SS Qv evaluated)

!

Use AD to Suggest
Concepts for Achieving
Better Goal Satisfaction

!

System Z
Baseline
& Deltas

System.A
Baseline
Deltas

System X
Baseline
& Deltas

TR (R

\22_J

!

8. Store New C2
Baseline

A Change Entered
A Side Effects

6. Repeat Steps 3 and 4 H Exc:rsl:on 2
for Other Deltas (partially
evaluated)
Y
7. Use SWaT and CC to % Excursion 2
Evaluate Impact ot (fully
Changes; Review GA @v evaluated)

89-03-214b

Figure 3-2. Steps in a User’s Methodology

—49-

all may be combined and evaluated as a group.
That evaluation process uses the system sen-
sitivity rules to identify potential areas of
change. The cost model is run, and the
requirements and design traceability model to
identify design features no longer needed. The
SWaT and capacity models are run (Step 7) to

determine whether there have been signifi-
cant ckanges at this level. This may indicate
the need for detailed simulation data to evalu-
ate performance after a set of changes.
Finally, before storing the baseline (Step 8)
the user verifies the goal attainment results.

-50-

4. CMLP DEMONSTRATION MODEL

4.1 DEMONSTRATION MODEL DETAILS

This section described the design of the
demonstration system, not all of which we
achieved in building the demonstration
model. The design of the CMLP model was
changed substantially in July with a decision
to use the ProWINDOWS user interface. This
decision was critical. Although the interface
is extremely user friendly, it was far more
difficult to implement than we had antici-
pated. A flle descriptor problem (described in
Section 4.3.4) made it impossible to imple-
ment data interchange between Prolog
models directly. As a result we lost the
rapid-prototyping benefits of Prolog and were
unable to get all of the forms integrated and
working. However, the as-built model was
adequate to demonstrate the principles
involved. Any differences between the
demonstration system design and the deliv-
ered model are noted throughout the section.

The demonstration model design, shown in
block diagram form in Figure 4-1, is a subset
of the overall design described in Section 3
and shown in Figure 3-1. One omission in the
user interface design is the definition of user
classes, including their requirements, capa-
bility, and outlook (user knowledge base). The
demonstration model design does not have the
capability of automated personalization for
each user class. Also, since models are not
implemen*~1 to allow comparison to other
baselines, some simplifications have been
made within the session manager. The
meta-manager interface does include record-
g of the starting or parent baseline for the
system, an updated development baseline as
the session progresses, and an excursion
knowledge base that describes the changes
that have taken place in the baseline.

The following sections describe each of the
C? models within the C .1LP demonstration
model, starting with the four models used to
describe and analyze the C? system and
ending with the system sensitivity model,
which allows the user to identify changes that
may need to be made to keep the four models

51—

consistent. Section 4.1.6 then describes the
CMLP operational concept in the context of
an air defense mission. Screen forms are
defined in the User’s Manual (Appendix B).

4.1.1 DESCRIPTION MODEL. The descrip-
tion model is a collection of forms and
knowledge bases allowing the user to describe
a particular C% system. The model describes
the threat addressed by the overall defensive
system, the sensors and weapons portions of
that system, and the design concept for the C2
system providing control for the sensors and
weapons.

Geormretric considerations are modeled in a
simplified form. The user establishes a set of
range bins ihat are used within the threat,
sensors, and weapons models to describe the
expected performance of these elements.

An overall summary of the data contained
within the description model is shown in the
baseline display of Figure 4-2, which in this
case is populated for an air defense system.
Also shown is a summary of the goal
evaluation from the goal evaluation model
and, at the bottom, a recording of the system
description changes made during the session.

The threat and defensive system elements
(sensors, weapons, and C2) include character-
istics that affect other C? system elements.
The values assigned are not directly used by
the models developed within the CMLP
demonstration system. A list of these
characteristics (but not the value, except for
C?) is maintained by the demonstration
system and can be used by the system
sensitivity model. The list of characteristics
for each subsystem is entered through a
characteristic developer form as shown in
Figure 4-3. This form was designed to allow
the user to create, delete, or alter the
description of the characteristics. However,
the create and delete capabilities do not work
in the delivered model. The characteristics
incorporated in the demonstration model are
listed in Appendix A.

A status of the characteristics of the C°
system, as the subject of CMLP, is recorded

I

89-03-126¢

*Stored as part of baseline knowiledge base

Figure 4-1. CMLP Demonstration Model Design Concept

within the baseline. This is described in the
discussion of the C? element form (Figure
4-7).

The threat specification form is shown in
Figure 4-4. For each threat weapon carrier
described in the baseline system, the threat
specification display makes accessible the
appropriate armaments and their deployment
range bins. The example describes the
armaments carried on the cruise missile
carriers in the enemy inventory, defining the
100 carriers as carryiag an average of 10

-52~

]

cruise missiles, including 4 low slow cruise
missiles of which 3 are launched in range bin
1, and 6 high fast cruise missiles of which 4
will be deployed from range bin 1. The use of
the range bins is discussed further under the
SWaT model (Section 4.1.2).

Specification of the sensor system is
illustrated in Figure 4-5. (In the delivered
software the information shown in the
TARGET box will not display.) The user has
selected the sensors defined for the longer
range bin (1). These sensors include

)] [—OGIE) (L canc

) (__SAvE

it) (_Load)

Cwelr
Auther Nll’l.
Date 23 May 1946
System iype ADI
Number 1§
Pareat System lype ADI
Pareat mumbder 9 i
Level Number S]GENERAL GOAL GROUP Total Satis Partl uUnsat N/App N/Sup
1 { System Robustness Go 4 1 1 2 0 o
2 1 Surveillance Data Us 6 3 1 1 1 0
k] 6 Systea Response Sele) 0 2 3 0 0
System Timeliness Go 3 2 1 0 0 o}
Systeam Authority Con 3 0 2 1 0 0
Systes Survivabllity 2 0 0 1 1 0
3)SENSOR TYPE Number 3| WEAPON PLATFORM TYPE Number 3| THREAT CARRIER TYPE Number
Short Range Radar 110 Interceptor 300 Cruise Missile Submar 48
oTH-8 1 Interceptor 300 Cruise Missile Carrie 100
Long Range Radar S HAWX Launcher S0 Somber 80
Airborne Radar 2 Patriot Launcher 50
.. -
g CON‘[INT. B NOIES.
8 A
ELEMENT ASPECT ORIGINAL CURRENT
somber Number 80 180
Interceptor s(dattle) 40 60
HAWK Launcher S(Battle) 40 60
Enemy Order of Battle Mai Func Stat Manual Automatic
Weapon-Target Assigrment Func Stat Not Done Manual
Display Generation Func Stat Manual AGM

Figure 4-2. Baseline Display

forward-based short-range radars and the
over-the-horizon backscatter radar. The
probability of these radars tracking a threat
across range bin 1 has been transformed into a
percentage tracked based upon estimate of the
enemy attack strategies. The sensor specifica-
tion form is also used to describe the range
bins used in the SWaT model.

Specification of the weapon systems is
shown in Figure 4-6. Aircraft interceptors
and Patriot ground-to-air missiles may be
employed. The armament for each Patriot
launcher is shown in the armament column (6
Patriot surface-to-air missiles), along with

the expected performance (probability of kill
against each target) for the Patriot SAM.
Figure 4-7 illustrates specification of the C2
system elements. For this particular specifica-
tion, the hierarchy includes one Air Defense
Operation Center, one Regional Operation
Center, and six Sector Operation Centers. The
functions and characteristics for the ADOC
are shown; functions and characteristics may
both be scrolled. The bottom window in
Figure 4-7 shows functions not done (or not
supported) within all of the C2 nodes.
Within the C? element specification the
user is provided with buttons to allow

-53-

1adojanaq ansusyoeiey) ‘g-y ainbiy

]
{oNuo)H pue puewwo) p suodeap -0
o.::_a&uu 3o 13a3] 13m0 v v Bujresado I .
MUTIUOD puw sjusead bujyzoddns pue z) Uy sIssoy uyeysns w9shs 77 Wy Aq Buyssesosd waep siinbas as0jasan
03 wa3shs 23 ¢ jo L3vqiqeded eyy , puv waishs z0 ayj) 03 9I9J193u] YOjyn suodesn jo saqenu Iy
) :suojieaado papeabaqfi] - : 33quny uodeapf:
8 H
A311iqede) dn-yoeg m jo »::..22._
SUOITOIUNEMOD SlquaAtAMS). 11853 ISUSS L. :
Gansg) Lypmoes eoyshug ConEn) sunfoA 94§3093)3 bAY
Camn) Cums) »dis sieany
1C)
Cimw)
Camiz) DI1STUILOVHVHD [

JC vy J(C_amee J(
¥314013A30 DTISTHILOVHILD

$10SU3S °q

H1407TIAIG ITISTHILOVIVIDD

jeasy] ‘e

-y

o-nuuau 20 a4y Aq bugssasosd eyep asgnbas ssozasay
puw wa3ss Z2 Y3 0} 359JIIYU} YOIyYn SIOSUIS JO JaqENY YL .
I J3GUNN JOSUIS [7 |

o.nou..o- Atpuagss ysurebe awaq 0y ybnoisq aq o3 pajydadrs ause
pue A203usaul Uy swy AWaus 9y} YIIym SITINYY JO QU YL
: Jequny waiuyf:

uojINios
Ayragrisuss
GanEi) swnjop ab6w13a0) 22
i) addy swaml
H I . :o:ouom i ”.“MNHHM
(GETTLITES)
Casnis)

SI1ST¥3IOVNVHI [ININI13f3)

>a~:nn._o=.o=3_.
11tiqedareg
Hﬁmu poads

Ayysusg tejands
(buyseq A1vejis) wogyedo

JIISINILIVNVHD

COawm JY(Cewy (v) (T awee) (e)
, 434013A70 O11STHILIVHVID

~54-

complete modification of any element. In the
delivered model the ADD and NEW buttons in
the element and group browsers do not work.
The form was designed to allow the user to add
or modify the status assignments within the
function box; this provision does not work.
The function developer form, shown in Figure
4-8, was design to allow the user to create,
modify, or delete functions groups and
individual functions within the groups, as
well as to change the description functions.
This form does not currently work.

The state of each of the characteristics of
each C? element can be specified on the C2
element form. The model was designed to
allow the characteristics to be zenerated by
the characteristics developer form as dis-
cussed earlier and shown in Figure 4-3. This
form does not work in the delivered model.

4.1.2 SENSORS AND WEAPONS
AGAINSTTHREAT MODEL. The SWaT model
performs a rule-of-thumb calculation on the
expected success of the defensive system in

TIREAT SPECIFICATION
 weer) C_vone) (_cawmceL)

$[THREAT CARRIER TYPE TOTAL
a8 |CHeIE g
(Coeeere. .
Csimse)

S| THREAT DEPRNG NUMBER
{ woDI }
3 MODIFY
|G
1

2

Low Siow CM
High Fast M
Low Sliow CM
High Fast CM

N~ -

CRUISE MISSILE CARRIER (CMC):

An aircraft designed with the capabtlity
to
deliver cruise missiles to a stand-off range
from the intended target zone and release the
cruise mlsslles;

Figure 4-4. Threat Specification Form

55—

engaging the threat. The demonstration
system includes a limited geometric capabil-
ity by allowing the user to define operations
occurring in a number of range bins. The tool
does not need to understand the bin
definitions, but only the bin attributes. The
bins are numbered so that number 1 is the
farthest range (at which threat may be
detected); processing occurs for that bin first.
Armaments are deployed from threat carriers
if so specified. Next it is determined which
elements of the threat will be detected and,
based upon the rules of engagement and
weapons assigned, which will be engaged. A
percentage of those engaged will be killed
according to the weapon probability of kill.
The user may allow shoot-look-shoot strate-

_.SENSOR & RANGE SPECIFICATION

(umeLp) { oomE) { CaMCEL)
o FANGE BIN)
..-......; e
2
S| SENSOR TYPE NUMBER
short Range Radar 110 JlRoeley
oTH-3 N ()
(CRevERT)
of
! TARGET ¥ (TRKD)
Bombar 90
Cruise Missile Carrier as
ECM Aircraft sS
Support Aircraft ao
CM Submarine 0
L Bomb 0
=N
o

Figure 4-5. Sensor and Range
Specification Form

gies against surviving threat. The threat then
proceeds into the next range bin and the
process is repeated until all range bins have
been completed. The results of the process are
reported back as shown in Figure 4-9, with
each range bin reported separately before the
data is used in the subsequent range bin.
The demonstration system SWaT model
allows validation of a variety of rules of
engagement but does not include a temporal
analysis and does not look at C2 degradations
resulting from delays. A logical extension of
the SWaT model is a full temporal system
simulation incorporating C2. In future
versions we envision using a SWaT-like
calculation for top-level trade studies,
supported by detailed simulations to calibrate

WEAFON SPECIFICATION -

{ nerP) (C_ooue) (C_CANCEL)

Range Switch
RakGE Ot
SIWEAPON PLATFORM TYPE NUMBER
: Interceptor 300
Patriot Launcher 50
ARMAMENT MAGER
Patriot 6
=T TARGET 3Ll | (hsTey)
Bomber 95
High Fast Cruise Missile 80
Low Slow Cruise Missile 40
Cruise Missile Carrier 10

S| Patriot SAM:
A sedium range surface to air missile for
air
defense. The Patriot missile is the successo
r to the HAWK
Htsstle..

Figure 4-6. Weapon Specification Form

=56~

the high-level SWaT model and to resolve
detailed design issues. The SWaT model was
designed to run based upon the changed
parameters in a trial case using the design
excursions summarized on the bottom of the
baseline summary form: (Figure 4-2). This
linkage does not consistently work in the
delivered software.

'4.1.3 CAPACITY MODEL. A capacity model
concept that can apply to any of the elements
of the Command and Control system that
have limited capability to service a particular
function (or set of functions) is needed. To test
this concept, the demonstration system has
incorporated a limited version of the capacity
model. This limited version can be thought of
as the capacity available within the total data
processing capability for all Command and
Control nodes. The total system capability is
modeled within the demonstration system,
since the demonstration system does not have
the capability to geometrically break down
the threat, sensors, and weapons as typically
occurs in geographically based Command and
Control nodes.

The user interface for the capacity model is
shown in Fiigure 4-10. The capacity model has
been initialized to a state that describes the
capacity being consumed at worst case
loading for the baseline system. Inputs
include the percentage of capacity being used
in the baseline, and a description of how each
function wusing the capacity consumes
capacity. The capacity consumption functions
are described in terms of arithmetic functions
of the numbers of threat elements, sensors in
the system, and weapons in the system. For
each contributor to capacity usage, the
percentage of its current usage is recorded.
When changes to the system are being
considered, the capacity model can then
evaluate the impact of these changes on the
capacity limiting item. The capacity model
was designed to provide a quick assessment of
candidate changes and indicate expanded C2
capacity needed if the changes were to be
implemented. In the delivered software the
capacity model does not work.

D O
[11 4 |n¢un$
FUNCTION Registration

STaTUS
& Autosstic
& Hanual
T not Supportea
O not Done
Cwetr) C_oowe) [_Cancer)
3] C2 ELEMENT LEVEL NUMBER
ROC 2 1 |CEEED)
soc a6
3] GROUP FUNCTION STATUS
Sensor Cntrl Blanking Control Manual SCITITENS
Senscr Data Acceptance Automatic
Coordinate Xformn Automatic
{razhlned Feg1Ztratison Mannal
Fusion/Correlation Auto a Man
Tracking Track Update Automatic
CHARACTERISTIC STATUS
Sack-up Capability Partial
Degraded Operatfions Partial
Mobile: ’ No
NBC Hardened No
pPhysical Security Yes
Secure Communications Yes

Registration:

sensot data to determine positional errors, due to
translation errors and viewing angle, and correct the
errors.

The process which applies an sigorithm to the received

GROUP FUNCTION STATUS

Sensor Cntrl ECOM Control Not Done
Sensor Cntrl Radiation Management Not Done
Sensor Catrl Sensor Tasking Not Done
Telling Authority Control Arbitration Not Done
Thrt Assant/ Discrimination Not Done
Threat Eval Priority Ranking Not Done

Figure 4-7. C2 Elements

-57-

LEMGUNSG, WEANUNS & THHEAT EVAILATIUN

Sl wesfL switems

16116 T Singie Shot

i AL T e R 5 e L

(_wete) (_oowe J [cCanCEL J (toap)} [Sa

VE

J

S| FUNCTION GROUP

S| FUNCTION

Sensor Control
Tracking

“] Threat Evaluation
‘{Threat Assesszent/Id
{Weapon Assignment
“Neapon Control

Flight Route Correlation
route peviation Alert -
F¥/SIF Processing
Geographic Determination
Challenge Processsing

§:]Discrimination

i

DESELECT

2)Route Deviation Alert:

the flight path.

The process which monitors tracks on a known flight path and
provides a warning indication should the track deviate from

Figure 4-8. C2 Function Reviewer/Developer Form

Range 1 Results

a3 | ')

W HUKG, WREANUKL & TIDAL EVALUATIUN

Jwef NEOEL SWITCMS
aast 2
tactte O single Shot

Range 2 Results

——

Crutse Missile Submarine “]]] [}]

Migh Fest Crutse Misstle 640 -] as S44 0 0 High Tast Cruise Misslle

Monber] 1 90 ”n (3] “% Low Slow Cruise Missile 338 % «3 100

Cruise Nissile Carrier 100 2 (L} as 50 @ Crutse Missile Carriec [%] as 53 100

Low Slow Cruise Missile a7 3 [] 523 a3 446 hoad 800 [} [} Q
—

MAMBER T BATTLE 0 BATILL PRIOCRITY

—— —
MAGER % BATTLE § BATTLE PRIOAITY

2

300 40 120 2

? 1

nigh Fast O« 0 640
Soader 43 pL1
M Cacrier 7 43

]

18

Cwerr) (C_oowe) (__canceL)

; PROCESSING CAPACITY Percent

{pesign Load 55
Spare Requirement 25

1

3| FUNCTION GROUP Reqrant
Sensor Control ki
Tracking 19
Threat Evaluation 8
Thrt Assmant and Identific 8
Weapon Assignment 26
Weapon Control 12

:' FUNCTION GROUP SENSOR WEAPON THREAT
Sensor Control Linear. None None
Tracking Linear None N Squared
Threat Evaluation None None Linear
Thrt Assmnt and Idertific None Linear Linear
Weapon Assignment None Linear N Squared

Lweapon Control None None Linear

5] COMMENTS :

) None.

T

Figure 4-10. Capacity Model Forrh

4.1.4 GOAL ATTAINMENT MODEL. The C2
function is the most difficult function to
evaluate as there are no natural measures
such as probability of kill or probability of
track. Simulations are used extensively for
determining what the system will do and how
that affects overall system performance. As an
alternative to a system simulation, a C2
designer often logically evaluates a C2 system
by determining how well it does each of the
functions required. A summary of the
evaluation process for ADI is shown in the
baseline form (Figure 4-2). The form, designed
to allow the user to add, modify, or delete goals
and evaluate C2 performance for each goal, is
shown in Figure 4-11. This form currently
does not work. A shortcut approach to
reviewing or setting the status of each of the

-59-

goal uses the goal evaluator form shown in
Figure 4-12.

Each of the goals initialized into the
database for the CMLP demonstrator is given
in Appendix A, Class 5. In initializing a
particular baseline model, the user will
evaluate the baseline C? system against the
set of goals. This evaluation can be updated
conveniently and easily as design changes are
being considered.

4.1.5 SYSTEM SENSITIVITY MODEL. The
purpose of the system sensitivity model is to
cue the CMLP user to related items so that he
may evaluate whether these items are affected
by a contemplated change. The model is based
upon a set of rules. Eighty-three generic rules
are built into the CMLP demonstration
database defining both the excursion and the

(nerr) (_oomé) (_cawtér) (C_toao

J (__Save)

g oA SR S GERERAL GOAL
Systea Robustness Goals CONSIDER ASSETS AND RISK
Surveillance Data Use Goals OPTDMIZE TIME 10 INTERCEPT Cx)
System Response Selection Goal MULTIPLE WEAPONS COMMITMNTS

ystea Timeliness Goals ENVIRNMNTL & GEOMETRC CONDS

-|Systea Authority Control Goals UPDATES TO WEAPONS

:]Systea Survivability Goals

GOAL DESCRIPIION

The C2 System shall consider the value of assets
at risk, degree of risk, probability of defensive
actions success, and the risk to assets that aay
result {roa defensive .ettons..

-
w!

Q satisfactory _
& Partially Satisfactoryf
O uUnsatisfactory d
O Not Supported

O Not Applicable

tpamgrem————
CRITERION FOR DEGREE OF GOAL SATISFACTION

PARTIALLY SATISFACTORY - The system utilizes

J 1imited information and rules of thumb for

gl ATI1GNINg weapons to specific threats or makes
unsupported assumptions in the nature of the threat
type for perforaing asstgmenr... :

AFFECTS
Swel necel { yYes Capectty Medel jo Sesgrapay Ness) O No

3| APPLICABLE FUNCTIONS C aee)
Ratd Composition
Strength

Priority Ranking
Weapon Probability of Xill
Weapon-Iarget Assigrment

3] ADDITIONAL REMARKS

Figure 4-11. C2 Evaluation Goals

(HELP) [T (_cancEL)

2| GOAL GROUP GENERAL GOAL EVAL .. ION
System Robustness Mazximum Case Attack Unsatisfactory
‘| System Robustness Processing for all Regions Satisfactory
" |System Robustness Conserve Defensive Resources Unsatisfactory
System Robustness Expend Resources Proportionall Partly Satis
Surveill Data Use Use all Data Received Partly Satis
Surveill Data Use Not Rely on Deniable Data Unsatisfactory

[¢»

Figure 4-12. Goal Evaluator Form

—-60-

impact in terms of element, characteristic,
and change; see Class 6 in Appendix A for
details. The knowledge base contains the
rationale and notes for users as also included
in Appendix A, as well as the goals (Class 5 in
Appendix A) that may be affected by the
excursion. For example, Rule 15 is:

Excursion Element: Threats

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: Weapons

Impact Characteristic: Number

Impact Change: Increase

Rationale: Ensure that the weapon
systems are not overwhelmed by a
numerically superior force.

Notes: In some cases, the weapon
systems may be superior even though they
are smaller in numbers. Adding more
weapons to the battle could increase the
loads on the C? facility.

Applicable Goals: [Maximum Case
Attack, Conserve Defensive Resources,
Expend Resources Proportionally]

The user identifies an excursion (nominally
a change he is considering or has made) and
the program searches the rule knowledge base
to identify areas of potential change. The user
may, at his discretion, make adjustments to
the model in the area identified. The design
intent was to keep a record of all excursions
being considered and display this information
on the bottom element of the baseline display
(Figure 4-2). This capability does not work in
the delivered demonstration model.

The mechanization for this cueing process
can also be used to suggest design changes.
For example, if improved tracking is needed
by C2, Rules 39 and 41 suggest increasing
either sensor coverage volume (allowing more
sensors to see a particular object) or
sensor sensitivity (achieving better object
resolution).

The system sensitivity model has the
capability to retrieve rules from the rules base
by specifying either the antecedent or
consequence of a rule. This allows the user to

-61-

accomplish inference from change to impact
or from impact to change.

Figure 4-13 shows a developer form for
system sensitivity rules. The buttons do not
work on this form.

4.1.6 OPERATIONAL CONCEPT EXAM-
PLE (AIR DEFENSE). The concept for the
CMLP demonstration model is illustrated for
an air defense system in Figure 4-14, which
presents an example populated baseline. A
baseline is placed under version control using
version descriptions as shown in the upper
left. It includes the number of each type of
threat, sensors, weapon platforms, and
weapons as shown across the top. The
characteristics of the defensive system are
recorded (characteristics are defined in
Appendix A, Class 1) using the element
specification form. The figure shows the
user’s selection in terms of Yes, No, or
Partial. The C2? elements are described as
shown near the center of the figure, as well as
the functions they perform (see Appendix A,

. Class 2) and whether they are performed

Manually, Automatically, or are Not Done or
Not Supported (i.e., the sensing or engage-
ment capabilities of the defensive system are
insufficient to support the function). The
population of a C? function database for air
defense is shown on the second page of Figure
4-14.

The performance of each C2 function is
rated through goal evaluation as shown at the
bottom of the first page of the figure. There
are 29 possible goals (Appendix A, Class 4)
making up 8 goal evaluation groups
(Appendix A, Class 5). Allowable evaluations
are Satisfactory, Partially Satisfactory,
Unsatisfactory, Not Supported (i.e., the
sensors or weapons do not provide enough
capability to allow the C2 system to achieve
this goal), or Not Applicable (i.e., this goal
does not pertain to this particular defensive
system). Also shown at the bottom of the first
page is population of the c.pacity model to
allow monitoring of possible C2 bottlenecks as
design changes are considered. Indicated

‘[weLP) ((_oome] (_camCEr) (LoadD) (T SavE)

2 EXCURSION ELEMENT 2| CHARACTERISTIC Q Increase
Sensors Number & Decrease |(_BELETE)
Weapons Location (Primary basing) O Different
Threats Spatial Density Crevenn)
) Speed 0O Unchanged

ijDetectability
suverabflity

2| THPACT ELEMENT 3| CHARACTERISTIC & Increase | SECILES
Sensors Number O Decrease |(CESELECT)
r;:pons _ l{‘ocation 0 Different

eats
2 y _TPe O Unchanged
~cS1tlivity
Resolution

; RATIONALE

‘JIn order to provide detection capability at the ranges

]comparable to that which is achievable with threats of normal

‘| sensor signature or EQM capability, more sensitive sensors are

-{necessary to detect the threat.

L

2] NOTES

“{Increasing the sensitivity of fielded systems may not be

‘{practical or possible and a new Sensor design concept may be.

{necessary. :

=

SIAPPLICABLE GOALS
USE ALL DATA RECEIVED CEErans)

CORRELATE & FUSE DATA
CONTROL RESOURCES
SEND DATA & DIRCIVES IN SUFFCT TIME

Figure 4-13. System Sensitivity Rules Form

nearer the center is population of the SWaT
model, for which the controls and weapons are
shown in abbreviated form. The system
sensitivity model is not shown because this
waseline did not tailor the nominal sensitivity
rules (Appendix A, Class 6) for this air defense
systerr.

-62-

4.2 EXPLOITATION OF LOGIC
PROGRAMMING
4.2.1 IMPLEMENTATION OF CMLP DEM-
ONSTRATION SYSTEM. An overriding con-
sideration for CMLP was the quality of the
demonstration, so as a practical matter the
most conservative development plan was

VERSION THREAT CARRIERS SENSORS [WEAPONS
NAME ad¢ 16 STEALTH A/C 0 SHORT RANGE 5 WEAPON CARRIERS
DATE 13 May 1988 BOMSERS 80 MEDIUM AANGE 0 INTERCEPTOR 609
AUTHOR Mark CRUISE MISSILE CRS 100 LONG RANGE 110 MISSILEER 0
PARENT NAME ad# 9 ECM AIRCRAFT 20 OTH 1 SAM LAUNCHER 100
)\ SUPPORT AIRCRAFT 20| | SPACE BAsED 0 A
SUBMARINE CM CARRIERS| <8 AIRBOANE 2
TBM LAUNCHERS 0 BALLISTIC MISSILE WARNING | 48
4 4
BASELINE
VERSION — CZELEMENTS CZ FUNCTIONS TO NEXT PAGE
THREAT CARRIERS ADOC 1 SENSOR CONTROL
SENSORS Rocc ! TRACKING [JWL:RPEO:LSC%HAARF;AC?ILERRI‘SSTTICCSS
WEAPON CARRIERS SOCC 6 THREAT EVALUATION [SENSOR CHARACTERISTICS
C2 ELEMENTS - SFC 0 THREAT ASSESSED C2 CHARACTERISTICS
C2 FUNCTIONS SAMOC 0 WEAPON ASSIGNMENT DEGRADED OPERATIONS S
C2 CHARACTERISTICS WEAPON CONTROL MOBILE N
EVALUATION — TELLING NBC HARDENED N
EXECUTIVE PHYSICAL SECURITY %
SURVIVABLE COMMUNICATIONS| §
=~ BACK-UP CAPABILITY S p
SECURE COMMUNICATIONS y | H
SECURE DATA PROCESSING | ¥ [
Y
EVALUATION) SWaT PARAMETERS % SWeT BN Z
SWaT o #OF RANGE BINS 2 SWaT BIN1 T =
CAPACITY % TRACKED, BIN 1 s | THREATS DETECTED | 64
i GOAL EVALUATION b— : BOMBERSKILLED . |w5
PRIORITY, BOMBERS 1 CMCs KILLED 43
CMs KILLED 3¢
PRIORITY, CRUISE MISSILES 4 HAWK REMAINING 0 J
PATRIOT, % CMCs KILLED s AMRAAM REMAINING | 39
AMRAAM, % CRUISE MISSILES KILLED | 70
% INTERCEPTORS IN BATTLE, BIN 1 20
e
Y
GOAL EVALUATION 1 2] 3]« 5]6 Y FUNCTION %
ROBUSTNESS U S P P B CAPACITY SENSQOR CONTROL 7
| SURVEILLANCE DATA USE plnal sl el]| e e | TRACKING 19
| AESPONSE SELECTION uleleplulel. prv— THAEAT EVALUATION | 8
TIMELINESS s|sjul- . THREAT ASSESS/ID P
AUTHORITY CONTROL pINs| S - - | WEAPON ASSIGNMENT| 26
SUAVIVAGILITY vle L] - PROCESSING % WEAPON CONTROL | 12
DEGAEE OF MAN. IMPICONT U iNs <] - DESIGN LOAD 55 TELLING 5
SECURITY/FAULT TOLERNACE | S |[nal| s | P SPARE REQUIREMENT 25 EXECUTIVE 15
99-08-681a

Figure 4-14. CMLP Demonstration Model Concept: Air Defense System

—63-

SENSOR CONTROL WEAPON ASSIGNMENT
BLANKING CONTROL M WEAPON STATUS ASM
RADIATION MANAGEMENT) WEAPON PROBABILITY OF KILL ND
ECCM CONTROL ND WEAPON INTERCEPT TIME ND
SENSOR TASKING ND WEAPON-TARGET ASSIGNMENT M
TRACKING WEAPON CONTROL
SENSOR DATA ACCEPTANCE _ A WNTERCEPT SOLUTION GENERATION A
COORDINATE TRANSEORMATION A INTERCEPTOR GUIDANCE M
AEGISTRATION ASM SAM GUIDANCE ND
FUSIONCORRELATION A TARGET UPDATE PROCESSING A
TRACK UPDATE A WEAPON EFFECTIVENESS M
AMBIGUITY RESOLUTION ND
TRACK INITIATION M TELLING
KILL ASSESSMENT M DATA RECEIPT A

POSITION TRANSLATION A
THREAT EVALUATION ’ DATA TRANSMISSION A
RAID COMPOSITION NO INPUT/OUTPUT FILTERING (GEO, TYPE, 1D)| 4
FLIGHT CHARACTERISTICS M REPORTING RESPONSIBILITY .
STRENGTH ASM LINK $TATUS REPORTING A
PRIORITY RANKING ND ALERTS/WARNING INFO A
ENEMY ORDER OF BATTLE MAINTENANCE | M AUTHORITY CONTROL ARBITRATION ND
THREAT ASSESSMENTIDENTIFICATION ' EXECUTIVE (0S)
FLIGHT ROUTE CORRELATION A REAL TIME CONTROL A
ROUTE DEVIATION ALERT A SYSTEM MONITORING/RECOVERY A
IFF/SIF PAOCESSING A RECOROING A
GEQGRAPHIC OETERMINATION M SIMULATION . - A
CHALLENGE PROCESSING M OPERATOR INPUT PROCESSING A
DISCRIMINATION ND DISPLAY GENERATION A

EXPANSION OF C 2 FUNCTIONS
809-11-081

Figure 4-14. CMLP Demonstration Model Concept: Air Defense System (continued)

adopted. It had to take into account the fact
that the knowledge representation and
inference facilities would have to be built, as
well as the user interface. The plan required
developing the knowledge engineering neces-
sary to support updates and evaluations with
simple knowledge represented directly in
Prolog, and developing the user interface for
the demonstration as an inherent part of the
knowledge base maintenance. The knowledge
representation stabilized in the initial

demonstration model should be converted
into an object-oriented form, providing
experience with evolving knowledge repre-
sentations, including the one used in the
development of the demonstration system and
a second frame-based design study. Section
5.1.4 discusses object-oriented approaches
based on Quintus ProTALK and metaProlog.

The TLCSCs implemented and supported
by this knowledge engineering effort are
shown in Figure 4-15 and described below.

CMLP
Demo
System

-

|

-

|

Description User Mata- SwaT
Model interface Manager Module
(DM) (U (MM) (SwaT)
Update Sensors (US) Presentation — Command Selection initialize (SI)
Update Weapons (UW) Manager (PM) (CS) - SWaT Form (SF)
Update Threat (UT) Session : - Knowledge Server Calculation (SC)
Update C2 (UC) Manager (SM) (KS) Trial Manager (ST)
— Interprocess Exit (SX)
Communication and
Control (IC)
Cantext (CX)
Help (HH)
System Description Capacity
Sensitivity Model Characteristic
(SS) (DM) (CC)

t Rule Review (RR)

Impact Assessment (1A)
Rule Development (DR)

L Update Model — Generate Summaries
Sensors (US) - Parent Baseline (SB)
Weapons (UW) — Development (SD)
Threat (UT) ~— Excursions (SE)
¢2 (uc)

803 Nt

- Maintain KBs for

= 02 Functions (DF)
— Characteristics (DC)

Figure 4-15. CMLP Demonstration TLCSCs and LLCSCs

-65-

The class structure and knowledge represen-
tation are described in Section 4.2.2.

e User Interface. Ul receives commands
from the user and formats responses from the
analytic modules. There are two LLCSCs:
Presentation Manager (PM) and Session
Manager (SM). Rather than being discrete
modules of code, these logical LLCSCs are
implemented as functions of the Quintus
ProWINDOWS package that are distributed
in the LLCSCs supporting each of the models.

e Meta-Manager. MM passes relevant facts
to the analytic functions and receives back the
results of their inferencing. MM decides
which function to call, what to pass it, and
what to do with results on the basis of the user
commands passed from SM and the contents
of the context knowledge base. This
knowledge base tracks the inferencing
process; its contents represent the current
state of the system. MM has five LLCSCs:
Command Selection (CS), Knowledge Server
(KS), Interprocess Communication and Con-
trol (IC), Context (CX), and Help (HH).

e Description Model. DM maintains the
repertoire of components which may enter the
development baseline. It allows the user to
select from them as appropriate and supply
further details as required to specify a
development baseline, to display summaries,
and to print the current state of the
development system. DM includes nine
LLCSCs which:

(1) perform development baseline system
knowledge base updates:

- Update Sensors Submodel (US)

- Update Weapons Submodel (UW)

- Update Threat Submodel (UT)

- Update C? Submodel (UC)

(2) provide overview summaries of:

- The “parent” baseline used as a point of
departure for the current development system
(SB)

- The current state of the development
baseline (SD)

- The excursions which the user has
applied to the “parent” baseline to create the
current state of the development baseline (SE)

-66-

(3) provide for the maintenance and

development of knowledge bases for:
- C? Functions (DF)
- Characteristics (DC)

e System Sensitivity Module. SS describes
the relationships among the components of a
C? system. It provides data allowing the user
to reason about (1) the effect of a change in
one component (including threat) character-
istic upon other component characteristics;
(2) the rationale for making the component
changes; and (3) other secondary implications
of the change. SS has three LLCSCs: Rule
Review (RR), Impact Assessment (IA), and
Rule Development (DR).

e Sensors and Weapons Against Threat
Module. SWaT allows the user to explore,ona
trial-and-error basis, settings for threat
engagability and the resulting effects on
threat disposal. Seeing the results, the user
can then go back and try new settings for the
relevant factors in order to quickly explore
the effects of differing assumptions. It is
intended to be generic and high level, but
nevertheless provide a ballpark estimate
which can then be developed into a full-scale
study, involving detailed techniques such as
simulation. SWaT has five LLCSCs: Initialize
SWaT (SI), SWaT Form (SF), SWaT Calcula-
tion (SC), SWaT Trial Manager (ST), and
SWaT Exit (SX). .

e Goal Attainment Module. GA describes
how well a system meets each system goal. For
user reference, the goals, excursions, and
system characteristics which influence their
realization can be displayed. The GA function
also allows display of excursions associated
with user-specified improvements in a given
system goal. GA has three LLCSCs: Goal
Review (GR), Goal Evaluation (GE), and Goal
Developer (GD).

e Capacity Characteristics Module. CC
describes the capacity characteristics of each
baseline system in terms of the percentage of
the processing capability necessary to support
various system functions under a specific
threat condition. In addition, percentages
allowed for system overhead, constant

background processing, security overhead,
and excess capacity reserve may be specified.
The changes in capacity characteristics
resulting from an excursion are calculated on
the basis of these baseline descriptions.

4.2.2 USE OF KNOWLEDGE ENGINEER-
ING AND INFERENCING. Many of the
possibilities for knowledge representation
and inference were not required for the C2
models listed above. The following comments
apply to these features.

4.2.2.1 Objects. Objects have a class-
attribute-value structure. Owing to the
structure of the model, there is only one
well-motivated opportunity to use inference
within a class hierarchy, i.e., when both threat
carrier and threats can be targets for the
SWaT model. Accordingly, it was decided to
leave the implementation of the class
hierarchy until future development, when an
object-oriented system such as ProTALK
would be used. The same consideration
applied to the provision of multiple facets.
However, many attributes were instances of
other classes, resulting in a rich structure
capable of expansion. Class structure is
dictated by descriptive aspects of the
conceptual model, the points at which the
user would need to change the model, and
processing requirements of local computa-
tions, such as for the SWaT model.

The class structure is shown in Figure 4-16.
There are about 50 classes in the delivered
CMLP demonstration system. There are
about 500 instances of these classes
populating the knowledge bases. The knowl-
edge representations have led to some very
complex procedures to access knowledge.
These are discussed in Section 5.1.4.

4.2.2.2 Inference. Both data-directed
inferencing and goal-directed inferencing are
available in LLCSC 1A of TLCSCSS. The user
may hypothesize excursions and derive one or
all impacts (data directed), or he may
hypothesize impacts and derive one or all
excursions (goal directed).

Inference supported by arithmetic func-
tions is used in the preparation of summaries

-67-

(DM TLCSC) and capacity and SWaT
calculatiors.

Some inferencing is very difficult owing to
the simple data structures. To take a simple
case, the browsers often give the name of
something and the number of it. But given,
say, an instance of Threat Count, Name is not
an attribute (see Figure 4-19). To find its
name, first the Threat Type must be found and
then the Name of that. To find the name of its
Threat Carrier is even more complicated.

This seemingly circuitous line of reasoning
is due to the requirement of only mentioning
the text of a Name once in the system, because
only that way can the requirement of
complete system modifiability be met. If there
is only one possible location for any data item
(including the character strings that name
things), it can reliably be altered. Concurrent
consistency maintenance can then be
achieved by updating the browsers that may
be displaying that name (see Section 4.3.2).
4.3 USER INTERFACE DEVELOPMENT
The original CMLP design concept was to use
a line-by-line interface that would allow the
CMLP tool to be portable from system to
system. As the design evolved to a set of
loosely coupled models, each of which
contained interrelated data, it was decided
that the line-by-line interface would be
burdensome, forcing the user to concentrate
on tool use instead of analysis. Accordingly,
the CMLP contract was modified to include a
windowing package. This package makes the
contents of the knowledge base available to
the user in a series of forms. He can quickly
modify these forms and then determine the
impact of his modifications. He is expected in
a typical exercise to have many of these forms
on display at one time. A very common
exercise will be to make a change using one
form while retaining several other forms
supporting the analysis.

4.3.1 REQUIREMENTS FOR THE USER
INTERFACE. The various models in the
CMLP system will require a significant
number of forms. For the demonstration
system 18 forms were created. Each of these

sax’ ‘|

adAr° |

axl

uoyaidyaosag: ° |

QueN- * |

adil wiozyjeyg uodeapm)
uoyydyaosaq- ‘|

oweN"* |

adAy 3eaayl|
uvoyidyaoseq” * |

aweN* “{

adAyl zetaxen Jeaayl)
paxoe1l 3uaoxad° ‘|

*crutg abuey- ‘|

adAL |

14 waisig|

uogadiaosaq” |

aweN” * |

adiy aosuag|

***ejeq jusweway ansm.._
9t1313ieg uy uadiag- |
Aiyrotag |

TaqunN - * |

odAL |

**cuyg abuey’ |

Teyar- |

eleg wiojierd uodeam LeMmsi|
payoeuxy] ucuouum...
butuyeway-* * |

uo-ﬂx.._

atqeabebumz zaqunpn-‘ |
I2quaN Tefafur” |
atqeabebuy juadsaag’ ‘)
A3yaoyaa |

uno)* |

unaa.._
*crutg abuey’ ')
tegar’ °|
ejeqg 3abiel Lems|
. onvﬁuuﬂ-—.o . —
D] -Cﬁm @OCQ‘- . —

wajsAg uonessuowag 4TWI Ul aunjanng ssejd "9i-v anbiy

Teyay |

eleqg oyioel LeMs|

sujg sbuey-* |

sabuey JeMmsl|

@133eg ug u:wouwm..
A3yzoyag- -
*+ruyg abuey-
adAy-

ejeqg uodeam abuey JeMs

}

|

|

|

|

9jqesabebuy u:wouwm.._
A3yaotrag- |

**-utg 9buey-* ‘|
adAy- |

ejeg J9bael abuey rems|
uotadgaosag: |
UEMZ.-u.—

otaIoey” |

cccutg abuey* * |

ejeqg ofF30e] abuey reMmsl!
Kjyraoyag- -y

creutg ﬂmcmm...

od&y- |

v3eq juswewary abuey peMms|)
s{eo9 ayqeoyrddy- ‘|
§930N" * |

oﬁacoﬂumx.._

abuey) 2jo0eduy’ |
o13sfa9joraey) 3Ioedwi-’ |
juawatd 3oeduy’ |

abuey) :o«nusuxm.._
OTIASTIBIORIVYD UVOFSINOXT " * |
JUBWITE UOFSINOXT " " |

atny|

302..—

P10° |

103003 " |

dnoag* |

e3718q uazreg|

SHY kuqzcoz.._

juawwo) |

aieqg ‘|

uo:usc.._

Jaqunn”® * |

adAL |
uoysiapn gl
Sax umua:vwm.._
S958e[) P31035°°|
adArL*)
a |

sweN* ‘|

snjels t1eo9|

aweN" *

abuey)|

uojadraosag:
sweN" "

adAy juawaty gOl

uoyienteay leMs'
uotraenteag Ajjoeded-
uotraenyeag - *°
§)jIeway jeuoyITppY”
Aydeaboay s3oegyyY-*""
K3yoede) muuouut.....
jemg s30933V°
suotloung ayqeoytddy*
a1qedy1ddy 3JoN*
p@23axoddng j0N°
K1030e381308Un°
K1o30e3sjaes Affeyaaea:’
K1030e387308"
uogadyxoseq’ "
SweN* "
dnoayg trog
voyadyaosag - "
sweN" - °
Te0n- - *
uoyienjeag (ro9‘*
SNTRA MON*°°"
anyep uacamauo...
q08dsy*
s+ quaweTR" " *
UoTSINOXF " *
oweN* """
snjels Jeyo* - *
voyadyaoseq -
oweN®
COduQﬁhOnOQ.......
SweN- e
Juswayg -’
oj3Isyaejoereyd """
snlels OFastasideaeyd”
uEmz.......
jels oung-*
uvogadixosaq’
oweN e
ceeyoTIOURGT e e
:oﬁuﬂquonao.........
SweN et
dnoap uvojjoung- -
uogjoung- -
sn3e3s uofIdUNg” "
JaqunN-° © " °
LY b R

.
.
.
-

.
.
.
.

NQ>F....

uno) uswatlyd ZIH° -
Toquny- Tttt

. OQ>F.......

uno) jeaayr -
ebuey Juawhoideg - -
0130%} juawloydag- -
JaqQunN”

0&)?...

JUNO) 19faie) IeaIyL-
OCd:«MEOE.......
pasn° e

JoquoN: ctcc e
>Udh04h&.......
Oﬁhh.......

...Cﬁm GOCMK.......
TeFIL Tttt

v3eQ JuswWewWIy JeMS "
Juawaidwo)
>Uﬂh0#hm.....
0&>h.....

JUNOD Juaweway®
Iaqunp” °

...ﬁdm WUCM&...
adAr- -

uno) wiojijetd uodeay
IaqunN” ‘-

oweN" " *

uyg abuey* -

0Q>?...

JUNO) I0SUdS*

el12q"

S3JO0N°"*°

JUBMWOD* *

IaqunN Jjuazed* -

2dAl waisdgs juaaeg’ -
IoqunN° * °

SweN' """ -

9dA} wa3isAg* -
|ajeq" "

aoyany-* -

UOTSIDA" "

auyiased

T1¥A Jo A3yriqeqoxg: - --
UO@NQF....

%4 jebrep--
uotradyrosaq-

swenN

adA] uswewiy

.
.
e s s & 4 e e e+ & & v e e v s a2 o ¢ e =

.
e e. 8 & 3 & s+ e ¢ s o e o s o

. . .
— . A . — o —— A —— i ———— ——— —— ——— —— — . — N — " — e e— ———— —————

~68-~

forms provides multiple windows. The
windows display information, allow the user
to make a selection, or provide the
opportunity for the user to enter new data.
Each form must include a Help facility to
explain the nature of the form to the user. The
form must include a control capability for
turning on Help, and include provisions to
save the data on the form, cancel the form
without saving the data, provide information
to allow selection from other knowledge bases
within the system that feed the same form, or
allow the contents of this form to be saved as a
new knowledge base.

Each of the forms is tiled into separate
windows, each containing distinct but related
information associated with the form. For
example, the baseline display must include a
window with a description of the baseline,
including author, date created, particular
type of system it describes, a unique number,
and information about the parent system that
may have been used to create this baseline. In
addition, the user is provided with a window
to enter any comments and a second window
to enter any notes to describe this particular
system. Windows in the form describe the C2
elements, sensors, weapons, and threats
appropriate for this system. Another window
summarizes the goal evaluation model ratings
that have been established for the C2 system.
Future CMLP designs may require summary
outputs from other models. The {inal window
required in this form is a description of the
candidate changes (or excursions) to the
baseline that the user is considering.

Since most of the information contained in
the baseline display is not controlled from this
form, the user will almost always want other
forms available on the screen with the
baseline display.

4.3.2 THE PROWINDOWS INTERFACE.
The ProWINDOWS package from Quintus
was selected to implement the window
interface. This package was chosen despite
the fact that it was then available only in beta
form. It has since been released as a product
with an extremely large number of bug fixes.

-69~

ProWINDOWS was selected to allow con-
struction of the user interface without leaving
the logic programming paradigm. It is a de
facto industry standard available to support
both Quintus Prolog and BIM Prolog. Other
windowing techniques available on the Sun
would have required the interface to be
separated from the logic programming code,
which would have diluted the research into
the application of logic programming.

4.3.3 PROWINDOWS DESCRIPTION.
ProWINDOWS (Quintus, 1988b) provides a
means for building window-based user
interfaces in Prolog. The only commercially
available windowing package available for
Prolog, it was built by Anjo Anjewierden, a
graduate student at the University of
Amsterdam, and licensed to Quintus, BIM,
and other companies.

ProWINDOWS is an object-oriented sys-
tem with a class hierarchy and message
passing. It provides a number of windowing
primitives, including frame, defined as a
rectangular area of the screen into which
many windows may be tiled, apparently
limited only by the file descriptor limit in the
operating system. Specifically:

(1) A window is a rectangular area within
which interaction may occur.

(2) A dialog box is a window containing
structured interaction objects from the
following list.

(a) Button

(b) Label

(c) Text item

(d) Slider

(e) Menu; each menu is one of the
following types:

e Choice lists all choices and shows
selected item as inverted.

e Cycle lists only the current choice
and displays all choices when the button is
pressed.

e Toggle lists all choices and makes
them simultaneously selectable

e Marked is the same as Choice,
but check marks, rather than inverts, are used
to denote the selected choice.

(3) A graphical window contains graphi-
cal items including bitmap, box, circle, ellipse,
line, path, text, and textblock. This is not used
in CMLP.

(4) A view is a window containing text.

(5) Adictionary is a structure maintaining
a mapping.

(6) A browser is a view consisting of lines
of scrolled text.

4.3.4 PROWINDOWS PROBLEMS AND
SOLUTIONS. We found a large number of
problems in the ProWINDOWS implementa-
tion. To overcome them we had to make
substantial changes in the overall CMLP
architecture and also provide a large amount
of code that runs above the ProWINDOWS
code to allow the ProWINDOWS package to
be useful.

Many of the difficulties discussed here will
be resolved by PL/X, a completely redesigned
user interface that will run under Xwindows
(rather than SunView). This may provide a
much more portdble and powerful user
interface that can still be programmed in
Prolog.

4.3.4.1 File Descriptor Problem. A major
limitation was the ProWINDOWS reliance on
SunView in the Sun operating system. Each of
the windowing systems available from Sun
uses f..¢ descriptors for windows. In Sun OS
Version 3.X, there is a limit of 32 file
descriptors per process. This limit is
increased to 64 in Sun OS Version 4.X. Each
SunView window (which corresponds to a
CMLP box) requires at least two file
descriptors. A complex SunView frame (or
CMLP form) can easily come close to the
32-file descriptor limit when reserves are left
for popup windows callable from the form.

We identified three solutions to the file
descriptor problem. The first was to limit the
use of windows to allow implementation with
32 file descriptors. With the current form
designs, this would typically have limited us
to only one form at a time. Redesigning the
form to use fewer windows appeared to be
impractical. Further, the one-form limit
would have negated many of the advantages of

=70-

a windowing system. The second solution was
to use Sun 4.0. This was not available to us
during the critical portion of the develop-
ment. If it had been, it would still have
allowed only 2 to 3 forms within the file
descriptor limitation of 64. The third
solution, and the one selected, was to run the
CMLP system as a multiprocess rather than a
single process. This approach created two
secondary problems: creating an architecture
for the multiprocess system, and accomplish-
ing interprocess communications within the
ProWINDOWS limitations.

We considered two alternative multiprocess
architectures: chain (rejected) and star
(selected). The chain architecture starts with
a root parent origin process. Each subsequent
process except the last has a parent process
and a child process. Parent processes
communicate with children and further
descendants by sending messages through the
standard Quintus IPC mechanism. Each child
examines the message for its address and
either processes the message contents or
passes a message on to a subsequent child.
Children can communicate with parents by
returning results from a parental message
using the standard Quintus IPC mechanism.
Children are not able to initiate communica-
tion without modification to the IPC
mechanism. In this architecture, new
processors need to be spawned only when the
current child process runs out of file
descriptors for its window operations.

One problem with the chain architecture is
that considerable system overhead may be
spent and time delays may occur as
information is routed through several
processes before reaching its destination.
Also, once a process has been placed in the
chain it cannot be removed without breaking
the chain. In a complex CMLP operation this
may cause many processes to have to remain
in existence to maintain the chain, con-
siderably limiting the available system
functionality.

In the star architecture there is one central
process or server. The server can spawn any

number of child processes. Each process is
responsible for a different system function
(interface form). Each child process can
spawn a child of its own to handle functions
such as a popup window. This architecture
overcomes the problems with the chain
because a process is only active as long as an
interface window is being used. As soon as the
user selects DONE from the interface menu,
the window and the process are destroyed.
Additionally, message paths are shorter for
the star architecture because most messages
will be between the server and its child (or
from one child to a subsequent child).

One problem with the star architecture is
that the developer has to specify the various
child processes that may be created. Each
child process is geared in this specification for
a specific function. This limits development
flexibility and requires modifications to the
server to expand the system. On the other
hand, it aids in structuring the system.

Both chain and star architectures can
create communication and timing sequencing
problems. If the user. is trying to do several
operations at once, communications may get
out of sync. Also, the polling process required
for child-to-parent communication adds to
overhead.

To implement the star architecture it was
necessary to extend the IPC mechanism
provided by Quintus. The existing IPC
mechanism would have limited us to a master
Prolog process and a servant Prolog process
with only one-way control. The master is
allowed to send requests to the servants and
may receive responses when the servant has
completed the task. There is no mechanism
for the servant to send a request to the master.
This mechanism is appropriate for controlling
popup windows when the system needs some
input from the user. It does not work well for
more complex forms. The one-servant
limitation would have required disconnecting
a servant process and reconnecting a new
process to use a new form.

However, different servant processes could
handle different tasks working only one at a

=71~

time. We modified the Quintus IPC mecha-
nism to allow multiple children from one
parent and to allow children to initiate
communication with the parent. The server
must sequentially poll the communication
links from its children and process any
messages that come in.

An alternative is to run isolated
ProWINDOWS processes. This would have
alleviated the file descriptor problem but
would have caused major integration
problems.

We also considered using a library routine,
Popen, available within Quintus Prolog.
Popen allows one Prolog process to start
another Prolog process and communicate
with it. The communication is one way,
reading from standard inputs or writing
to standard outputs. While this allows
multiple Prolog processes to be hooked up,
the communication limitations appeared
unacceptable.

In summary, the selected approach of the
star architecture required modifying the IPC
mechanism. The first modification allows the
master process or server to control any
number of child processes. Each child process
may control its own popup windows or other
subchild processes. A second modification
allows two-way communication between
server and child. To implement two-way
communication, the server must poll each
active child periodically to establish a request
from the child for information transfer.
However, this solution involves creating
separate users for each form, from the
perspective of the Sun OS. It thus requires the
interchange of information between forms to
occur through the OS and, as stated earlier,
lost the rapid-prototyping benefits of Prolog.

4.3.4.2 Low-Level Facilities. We found that
the structures provided by ProWINDOWS are
in most cases of too low a level to be used
directly,. A number of the limitations of
ProWINDOWS seem directly related to its
use of the SunView user interface capabilities.
A similar user interface is HyperCard
(Goodman, 1988). HyperCard uses a subset of

the Macintosh user interface tool box. This
tool box (Apple Computer, 1985) provides
much higher level structures than does
SunView (Sun, 1986). To alleviate these
problems we created CMLP-unique forms,
browsers, and composite browsers, as well as
several processes to handle messages and data
within the system. These CMLP-unique
facilities are discussed in Section 4.3.5.

4.3.4.3 One Selection Per Screen. Sun-
View limits the user to only one active
selection per frame. This means that as the
selection is made, highlighting is dropped for
other selections in the system. To ameliorate
this problem, a small diamond is available to
mark a particular area. This small diamond is
inserted by SunView underneath and to the
left of the selected item and is not very
noticeable or clear as to which element has
been selected. An example of this problem is
shown in the system sensitivity form.
ProWINDOWS provides no facilities to
alleviate this problem.

4.3.4.4 Message Limitations. Within
ProWINDOWS, certain messages can be sent -
to windows only before they are open (i.e.,
displayed) and other messages can be sent to
windows only after they are open. This
division is not apparent from the documenta-
tion and is derivable only from an understand-
ing of the ProWINDOWS internal structure
not obtainable by reading the manual. These
limitations cost extensive time in attempting
to use ProWINDOWS.

4.3.4.5 Menu Limitations. Menus are fixed
at the time of their creation and cannot be
extended. Where we expected data entry to
create new elements in a menu, we had to
implement an awkward form for that menu.
For example, the range bin box in the
sensor/range form uses a browser to list the
number of bins. Bins can be snecified only for
using the sensor range form. Other forms use
a cycle menu, with the number of range bins
defined by the sensor/range form. Similarly,
on the slot model form the child is selected
from a browser to add new tiles and delete old
ones. Menus contained enough built-in

=72~

structures within ProWINDOWS to support
display and selection, while browsers
required considerable support.

4.3.4.6 Browser Limitations. Browsers and
other windows in the CMLP system were
limited by an inability to define a name stripe.
A name stripe is an inverted title above each
form and is available for a frame but not
for each individual window. To overcome
this limiiation, we provided a name stripe
identifying columns within the browser field
as a lead item. Unfortunately these titles are
not fixed on the screen and scroll out of the
user's view as he reviews elements of the
browser. If he needs definition of the columns
within the browser, he must go back to the
beginning.

ProWINDOWS did not provide any support
for marking the beginning and end of a
browser field. We overcame that limitation by
providing a dotted line at the beginning and
end of the data within a. browser. The
beginning stripe falls immediately under-
neath the title after each column discussed in
the preceding pdragraph.

Most of our browsers use buttons to control
data entry associated with the browser. This
caused us to create a composite browser as
discussed in Section 4.3.5.6.

4.3.4.7 Selection Limitations. We created
several browsers that are used as a menu to let
the user make selections. Unfortunately the
user cannot select elements that are stored in
columns within one browser item. This
required us to use a popup window to support
changes to elements within a browser line.

4.3.4.8 Data Justification. When gaining
initial experience with ProWINDOWS, we
decided to build a simple spreadsheet form to
investigate some of the structures in the
SWaT and capacity models. We found that
text items can only be left-justified, which
meant that there was no way to present
numbers so they could be edited in a natural
way; at best the item would have to be
reformatted and redisplayed after editing.
(Quintus told us that one of their program-
mers had attempted to build a spreadsheet

with ProWINDOWS and failed for precisely
the same reason.) We therefore had to provide
a process to right-justify numbers after entry.
This process also prevents knowledge base
items from being simply truncated when they
are entered into a field of limited size.

4.3.5 CMLP INTERFACE STRUCTURE. In
addition to the data justification process
described above, we created the following
seven special processes to run above
ProWINDOWS

4.3.5.1 Form. A form is a collection of
rectangular regions called “boxes” that are
fitted into a rectangular space by the Quirtus
ProWINDOWS software. The form is the user
interface for each user-selectable component
of the CMLP prototype system. There is
exactly one form per saved state of the
interface processes.

Each form is divided into rectangular boxes
having different responses to mouse clicks
within their boundaries. They also have
differing types of display format. These
aspects are customized to the subfunction
they perform. Similarly, as Figure 4-17 shows
for the sensor/range development form,
selection or update of a box leads to other
boxes being updated, as indicated by the
arrows.

Each form is created, used, and destroyed in
a single clause of procedure review or
evaluate. This clause can extend over several
printed pages. Clauses of such size are not
usually considered good Prolog style but are
required by the large number of variables
bound when making components of the form
that need to be accessed by other components.
The problem 1is exacerbated by some
ProWINDOWS classes (such as browser) that
can only be initialized after the frame has
been opened. The convention used as a model
for these clauses is:

(1) Create frame with form title.

(2) Create standard application bar.

(3) Create boxes.

(4) Specify layout relationships.

(5) Open frame (i.e., the form appears on
the display).

-73-

(6) Initialize boxes.

(7) Service user requests.

(8) Destroy frame (i.e., the form disap-
pears from the display).

(9) Report updates to meta-manger as
appropriate.

4.3.5.2 Standard Application Buttons.
Below the title bar of every form is a box
containing one or more of the standard
application buttons. These operate on the
entire form, and their effects are identical
across forms. All buttons remain inverted
while their associated code is executing. The
effects of clicking on a button are as follows.

e HELP. If the Help system is off for this
form, it is turned on. Subsequently, a Help
text is displayed in the Help form when the
user causes the mouse to enter abox. The Help
text resides in a file with the same name as the
box name, and may be upaated with an

Title Bar
Standard Application Buttons

. “Range
Range Box (Buttons

Yy

Sensor Sensor

Type/Number (Buttons
Box

¥

Target Type/ Percent

Percent Tracked (Tracked
Box Buttons

Yy

Description Box

Figure 4-17. Schematic Diagram of
Sensor/Range Development Form

external editor. Upon detecting the message
for mouse entry to a box, the current text in
the Help form is replaced with the text in the
file. If the Help form is not displayed, it is
invoked.

If the Help system is already on for the form
when the button is clicked, it is turned off,
ignoring subsequent entry messages. If no
other form has Help turned on, the Help form
is destroyed.

e DONE. Updates (if any) made since the
form was invoked are reported to MM and the
form is destroyed.

e CANCEL. The form is destroyed without
any updates being sent to MM.

e LOAD. The user is presented with a popup
window listing the indexed saved versions of
the knowledge base displayable by the form.
The popup window is a composite browser
with summary data about each version in the
browser, and with SELECT and CANCEL as
application buttons. If the user clicks
SELECT the most recent selection in the
browser is loaded, replacing any version
already loaded. If there is no selection within
the browser, clicking SELECT has no effect. If
the user clicks CANCEL instead, the LOAD is
canceled; any previous version remains in
place. It is not possible to abort a load once it
has started.

e SAVE. The user may be prompted for
descriptive information about the version
being saved in a popup window. The version is
indexed by the system and the relevant
instances are written to disk. The system
retains data allowing access to the stored
version. It is not possible to abort a save once
it has started.

All buttons are made by the procedure
make_buttons/3, in which each button is
specified generically as:

Name-(Head:-Body)/ButtonID
where

Name is the name of the button, such as
HELP, above.

(Head:-Body) is the procedure called when
the button is pressed. The procedure
makebuttons asserts (Head:-Body) and sends

74~

a message to the button; hence this procedure
matches the message cascaded from the user
interface when the button is pressed. Such an
approach allows variables to be bound within
the form as required for the specifics of the
button semantics. Binding variables in this
way obviates a considerable amount of
context data saving and referencing.
ButtonlID is an atom tagging the button'’s
reference in the context knowledge base. It is
only needed when a button is created that can
present messages from the knowledge base.
4.3.5.3 Generic Application Buttons. The
generic application buttons and application-
specific buttons (Section 4.3.5.4) usually form
part of a composite browser and are used to
control the effects of selection within the
browser. The generic application buttons have
the same meaning across all browsers to
which they apply, while the application-
specific buttons have specialized meanings,
specific to the form they are in and the
browser to whith they are attached. The

_ generic application buttons are as follows:

e MODIFY. Thisbutton allows the user to
modify the values in one or more columns of
the current selection of the associated
browser. A popup window appears, with a
dialog box showing details of the current
browser selection. The user may modify some
of those details, by typing a new value for the
named attribute. The application buttons
attached to the dialog box are ADD, DONE,
and CANCEL. The ADD button is described
below. If the user clicks on DONE, the
updated values that the user can legally edit
are used to update the local knowledge base
and the appropriate browsers in the form are
reinitialized to display the effects.

e ADD. This button allows the user to add
an item to the associated browser. It popsup a
composite browser initialized to a list of all
instances of the class displayed by the
browsers that are not currently in it. The
associated buttons are NEW, DONE, and
CANCEL. The NEW button is described
below. If the user clicks on the DONE button,
an entry is appended to the calling browser in

which the attributes are given minimal values
(e.g., 0) and the ADD popup is destroyed. If the
user clicks on the CANCEL button, no update
is made and the ADD popup is destroyed.

e DELETE. This button deletes the current
selection from the associated browser and
updates the local knowledge base as
appropriate.

o NEW. This button pops up a dialog box
with attribute names and text items which
allow a new instance of the associated
browser’s class to be specified.

e STORE. This button (together with its
dual, REVERT) allows the wuser some
capability to undo excursions he has made.
Pressing STORE preserves a state that can be
REVERTed to.

e REVERT. This button allows the user to
undo all the changes he has made within the
form since he last pressed STORE (or the form
was initialized).

4.3.5.4 Application-Specific Application
Buttons. These buttons provide specialized
actions specific to the form. They are made by
make_buttons/3, described above. Some
examples follow.

e NEW (Range). Allows the user add a new
range bin to the development baseline.

e NEW (Trial). Supplies the user with a new
trial in the SWaT model.

e CALC. Performs the SWaT calculation
and displays the results.

e SELECT. Provides the same functions as
above, but within the browser rather than a
form.

e DESELECT. Removes all selections from
the rule excursions or impacts, so that the
user may specify the conditions for a FIND.
The user selects excursion and impact
elements, characteristics, and changes as
required.

e FIND. Finds the first subsystem sensitiv-
ity rule matching the conditions selected. If
the button remains inverted after the
matching rule has been displayed, there is
another matching rule. Another click on
FIND displays it.

~75-

4.3.5.5 Browser. The ProWINDOWS class
browser is not usable for menu selection
without considerable supplementation. Not
only does it lack fundamental structures
necessary to support all but the simplest
choice sets, but it also lacks programmer
conveniences. For example, the width of a
browser is the width of its frame, not the
width of its text display area. Browser width
thus cannot be calculated from the width of
the strings; a vertical scrollbar, if any, and the
pixels at the edge of the frame must also be
taken into account.

The CMLP browser is illustrated in Figure
4-18, which shows initialization processes.
The ProWINDOWS browser (at the top of the
figure) is supported by a ProWINDOWS
dictionary (as recommended in the
ProWINDOWS manual) to hold the constants
displayed in each successive line. But the
dictionary entries must be formatted, and
must include header and footer lines as
described above. Entries are truncated to
allow them to fit within a column. The
formattingis controlled by a display_format/2
specification, which specifies the descriptive
text at the top of each column, the column
width in the browser, and characteristics tote
used when an expanded version is to be used in
a popup for update.

The input to the formatting process is not
the instances themselves, but the output of
init_values/3. This procedure may need to
access instances of multiple classes from the
knowledge base and may need to prepare
summaries and other abstractions of the data.
init_values/3 produces two outputs. One is a
list of lists of the values (dict_items) to be
displayed, one item per column, and the other
is a corresponding list of the instances so
presented. These lists are amalgamated with
the list of formatted entries so that when the
user makes a selection (returning a formatted
entry), the instance or list of values can be
identified as required.

The context knowledge base is used to
access the browser and dictionary references

Context KB
Browser fe— browser
4
Dict et— diet
Remove
r tieader/Footer
Formatted ' L
Values - dict_list
Amalgamate
1 Ligsts ® dict_amalgam
Display L gl Format
Format |
- dict_items
= dict_insts
. initial
Values
Class Instances
Knowledge Base
9-08-250a

Figure 4-18. Browser Initialization Processes

(which are previously created and stored in
the context knowledge base by the call
to make_browser/[3,4,5]) and store the
instances, items (list of wvalues), and
amalgamated list, and to set the current
selection to the empty string.

4.3.5.6 Composite Browsar., A composite
browser is a CMLP browser accompanied by a
dialog box containing appiication-specific
application buttons. For user interface

-76~

it

uniformity, the dialog box is displayed
adjacent and to the right of the browser.

4.3.5.7 CMLP Menus. CMLP menus
include the following.

e Marked Menu. This is the same as in
ProWINDOWS, but may have initialization
and other processes associated with it.

e Toggle Menu. This is the same as in
ProWINDOWS, but may have initialization
and other processes associated with it.

e Switch. This is the same as the
ProWINDOWS cycle, but may have initializa-
tion and other processes associated with it.

e Cycle Menu Bar. This is a dialog box
containing a row of switches.

4.3.6 LESSONS LEARNED AND RECOM-
MENDATIONS REGARDING THE USER
INTERFACE. The prime focus of the CMLP
project has been logic programming. Unfortu-
nately, the use of ProWINDOWS resulted in
numerous problems which detracted from the
logic programming effort. There are several
lessons.

(1) Originally we developed the knowledge
base and user interface in isolation, but
experience with translating into non-
interface form led to some revision of the
knowledge base structure. It is not clear that
the two components can be developed and
tested in isolation.

(2) We should move to a window mecha-
nism which does not depend on Unix file
descriptors. One of the significant problems
with ProWINDOWS (actually with SunView)
results from the use of file descriptors by
windows. Windowing systems currently
under development, using Xwindows and
NeWS, eliminate the dependence on file
descriptors and will greatly simplify future
user interface integration.

-77-

(3) SunView is an extremely powerful
application-development system for user
interfaces. Unfortunately, ProWINDOWS
uses only a subset of SunView, and does so in
an inconsistent manner. Careful thought
should be given before using ProWINDOWS
in future developments. This leads directly to
the next point.

(4) One of the primary reasons for using
ProWINDOWS was the requirement to
investigate the production of conceptual
modeling software in Prolog. Unfortunately,
not every language or software development
system is well suited to every application.
Software languages/environments must be
carefully matched with application require-
mants so that time and effort are nct wasted.
In the case of CMLP, Prolog is ideal for the
logic programming necessary for knowledge
acquisition and manipulation. But without
better tools, Prologis not suitable for building
user interfaces.

The object-oriented nature of ProWIN-
DOWS (which effectively provides a subset of
Prolog capabilities, but in a very useful form)

‘provides classes and message-passing and is

clearly a step in the right direction. But the
implementation of these ideas is incomplete,
and (in the version used in this study) too
unreliable to properly indicate the power of
the approach.

e

5. EVALUATION OF CMLP RESULTS

This section describes the extent to which the
CMLP research project has demonstrated
the use of conceptual modeling and logic
programming in command and control system
design. Section 5.1 focuses on the demonstra-
tion system and Section 5.2 on the design of
the overall CMLP tool of which the
demonstration system forms a limited part.
Although the project did not include
evaluation of the utility of the models in the
demonstration system, it fully substantiated
the applicability of the methods and the
soundness of the design. The tool is extremely
easy to use and greatly benefits the
organization of the C2 design process. Logicon
accordingly plans on further evaluation of the
tool during the course of C? design projects
and system architecture activities.

5.1 USE OF CONCEPTUAL MODELING

AND LOGIC PROGRAMMING

5.1.1 CONCEPTUAL MODELING IN
CMLP -

5.1.1.1 Extent of Conceptual Modeling
Use. The demonstration model was designed
to create the underlying framework of objects,
relationships, and properties that are impor-
tant in the conceptual modeling domain.
However, the delivered demonstration soft-
ware does not always work to implement the
characteristics described below. Briefly sum-
marizing only some of the major components:

e Description Model. The user can easily
create, modify, or view descriptions of existing
or hypothetical C? systems.

e SWaT Model. After defining particular
baseline system descriptions, the user can
execute different attack scenarios to see how
particular combinations of sensors, weapons,
and C? rules will perform against the specified
threat. The SWaT model, a tool for rapidly
exploring alternatives during the early design
process, provides estimates that serve to
narrow the range of solutions to a particular
problem. After the candidate solutions have
been found, detailed simulations may be
run to determine the final quantitative
projections.

~79-

e Capacity Model. This model provides
first approximations of capacity bottlenecks
in an existing or hypothetical system.

e Goal Attainment Model. This model
allows the user to evaluate a C? design against
a series of performance and survivability
goals. He may then use the effect on the goal
evaluations to determine the desirability of
design excursions.

e System Sensitivity Model. This model
provides explicit ways to represent and make
deductions about particular causal relation-
ships that exist in the domain, so that the user
can identify the effect of a change on all
elements of the system.

It is clear that the models described above
are representations of conceptual models.
How they relate to some of the descrigtions of
conceptual models available in the licerature
is not so obvious. Section 2.2 describes a
potentially applicable framework, the Gaines
hierarchy of conceptual models [Gaines,
1988]:

1. Source System: Distinctions among
fundamental concepts/interactions with the
world

2. Data System: Representations of objects
and relations

3. Generative System: Inference based on
data systems

4. Structure: Comparison of generative
models

5. Meta-System: Abstract comparison of
models

6. Meta-Meta System: Reasoning based on
abstractions of the models

In many cases the CMLP model as
implemented in code corresponds to an
element of the hierarchy one level higher that
the corresponding process applied by the user
and the CMLP model. Each element of the
description model is a source system, since
these elements relate to distinctions that
happen in the real world. In populating the
description model or design/requirements
traceability model, the user records his
perception of the system in descriptive form;

these models are of the nature of data systems.
However, as the user makes changes within
the description model, he and the CMLP
system are performing as a generative system.
Computational models such as the cost and
SWaT models are data systems. The analogy
development model is a generative system,;
however, the user performs meta-system
analysis by comparing the nature of CZ2
systems to define whether their similarities
are sufficient for analogies to be valid.

We concluded that the user and the models
are acting together as a pair, and that the user
extends the models in his use. In trying to
rank the objectivity of the individual models
(Figure 5-1), we saw a tendency to place the
model with user interaction as being more

Capacity Model

Cost Model

Requirements Traceability Model
Simulation Interface

Oblective

SWaT Model

System Sensitivity Model

Goal Evaluation Model

Description Model
Analogy Development Model

o
>
2
Q
2,
a2
3
n

50-05-026s

Figure 5-1. The Nature of CMLP Models

-80~ |
. —_;i

subjective than the model by itself. For
example, we rated the SWaT model as clearly
more subjective than other models because
the user must determine the parameters
required by SWaT in a highly subjective
manner.

To summarize the extent to which CMLP
uses conceptual modeling, we believe that the
tool draws heavily on the process. It is a
significant user aid for C2 design processes. It
does not replace the C2 design expert.

5.1.1.2 Approach to Development of
Conceptual Models. Section 2.4 presents two
alternative approaches to developing concep-
tual models: top-down methodology and
exploratory programming. We attempted to
follow the latter approach, but with four
significant differences.

First, problem identification was not
completed until well into formalization.
While the methodological model aliows for
cyclical iteration, the project showed that it is
possible to rely oo heavily on this flexibility.
The ability to go back and make fundamental
revisions well into model development may
result in a better or more¢ useful tool—if
project resources can bear the load that this
iteration creates. This is a major concern,
given the extent to which we found conceptual
model development to be goal driven. Until
the goals are finally agreed upon, the model
may undergo major revisions.

Second, we had to make major revisions of
the conceptualizations because the salient
objects in the domain and their relationships,
as well as the resolution at which they should
be represented, were goal dependent. As the
conceptualizations became richer, the poten-
tial system users were seen in a different light
by the domain experts. This led to revisions in
problem formulation. Considerable iterations
occurred between these two stages.

Third, the formalization and implementa-
tion stages occurred together. Rather than
using a preliminary, exploratory prototvpe for
formalization, we implemented the final tool
by expanding its scope as formalization
proceeded. This was a necessary concession to

limitations of project resources and schedule.
From this aspe:c of the experience, we
conclude that model construction and
refinement should be separated from the
development of the other software subsystems
going into the deliverable system. Different
kinds of engineering controls are appropriate
for these two processes, and attempting to
mix them was unsuccessful. The formali-
zation stage was highly interactive with
conceptualization and therefore required
maximum flexibility (especially in view of the
late revisions of the goals). The implementa-
tion of the deliverable system should have
been governed by a rigorous engineering
discipline, but this would have precluded thL.e
necessary flexibility. To a large extent the two
requirements are incompatible.

Last, the concept of continuous revision,
converging on a final implementation using
feedback from experts, was central to the
effort. Difficulty arose when fundamental
concepts about what could be done with the
model changed as the domain experts gained
experience with the partially implemented
version. The ability to make revisions should
not be used to justify incomplete problem
specification; it is intended to refine rather
than to redefine.

5.1.1.3 Observations From the CMLP
Experience. The basic project goal was to
study the process of conceptual modeling
using logic programming in the arena of C?
system design. We studied the process by
posing a practical probiem in conceptual
modeling and attempting to solve it using the
tools available. We do not claim that the
resulting observations which follow are fully
generalizable to other conceptual modeling
problems, but believe that they shed some
light on some underlying problems and
constraints associated with the modeling
process in this domain, and the implications
that these may have for other domains.

The premises that underlay the study are
significant because they resemble the condi-
tions under which much ad hoc expert system
development takes place in industry and

government: a need is perceived within a user
community and an effort is launched to
meet it. Our study had the following
characteristics:

e The problem domain, the C? system
design process, was initially ill defined.

e The knowledge engineering resources,
especially in terms of expert availability, were
constrained. There was, for example, no
opportunity to sit with a domain expert as he
worked through a real system design problem.

e There was no precedent for the target
application area.

e The conceptual modeling process was
directed at how human system engineers
perceive and think about C2 systems,
rather than physical, real-world systems (for
the modeling of which there is consider-
able precedent, although not using logic
programming).

e There was significant expert disagree-
ment about both the representation of the
domain and the uses to which. a resulting
computer-based aid could be put.

e The study focused on logic programming

-as a paradigm for conducting the conceptual

modeling of C2 system design. Normally, this
would not be a real-world constraint. It wasin
our study because of the overriding research
interests.

The above characteristics clearly do not
constitute the ingredients for a successful
top-down software engineering effort. In the
context of these specific conditions, we draw
the following general conceptual modeling
observations from the CMLP experience.

First, the conceptual modeling process is
iterative and cyclical, rather than a linear
sequence of steps as discussed in the previous
section.

Second, expert disagreemeaut is likely to
increase when the role of human judgment in
the modeling process is emphasized. Experts
will disagree not only on the model itself, but
on its scope and use. This phenomenon
reflects the limitations of the shared
conceptual model maintained by experts with
different (and different degrees of) experience

-81-

in the domain. One of our important
observations is that such disagreement is
inherent in the situation and cannot be
avoided. However, to the extent that the
resulting conceptual model highlights these
differences, it may be performing an
important service. Expert disagreement
should be dealt with as an asset, but the
expectations of the experts should be
conditioned to this view of the situation. We
tried to make the model highly adaptable to
allow experts to “personalize” it and also tried
to make areas of potential difference explicit
to allow resolution.

Third, because of individual differences in
domain perception, conceptual modeling is
highly goal driven. The structure and
contents of a model cannot be separated from
the problem-based context within which it is
constructed.

Fourth, the development of a conceptual
model should be distinguished from its
implementation in software as a deliverable
prototype as discussed in Section 5.1.1.2.

Fifth, the problem of confounding knowl-
edge acquisition (i.e., model construction) and
model implementation was exacerbated by
the absence of a high-level development
environment for logic programming which
would have absorbed much of the burden of
configuration control, truth maintenance,
consistency checking, and so forth, and which
would have provided “tool kits” for inferenc-
ing, user interface construction, and so forth.

In sum, we found that it is extremely
important for the experts being consulted in
modei development to interact with the
emerging model; indeed, it is hard to imagine
that we could have converged on a useful
solution without such “user-centered” soft-
ware tool design. We therefore conclude that
the use of a development environment is
extremely important under conditions like
those of our study It is probably essential if
the deliverable prototvpe is to be derived
directly from the working prototype. We did
not have the advantage of such an
environment.

-82-

5.1.2 LOGIC PROGRAMMING IN CMLP.
Logic programming using the language
Prolog has contributed to a vaiuavle tool for
addressing C? system design. The CMLP
demonstration system incorporates a sophis-
ticated window-based user interface com-
posed of multiple interacting processes in
Prolog. It was created in about 10
man-months, including time to learn via trial
and error the actual capabilities of
ProWINDOWS and the knowledge server
engineering. A large portion of the effort was
devoted to resolving problems due to the
immaturity of the ProWINDOWS package.

One test of the use of logic programming is
the extent to which rule-based reasoning is
used. The CMLP model, as currently
implemented, uses only simple rules of the
form: '

If (characteristic X) of (object 1) (changes),

then (characteristic Y) of (object 2)

(changes). .
This rule structure is the basis of the system
sensitivity model.

A more complex rule structure was coded
into the capacity model but does not currently
work within the demonstration system. An
example of the rule used by the capacity
models is:

If a percent of capacity is currently

required by function X, function X linearly

increases in capacity demand with threat,
and threat increases by B percent, then
function X will require A + .01 AB
percent of the total system capacity.

Analogy development (which is not implem-
ented in the demonstration model) was
designed to use:

If change X causes effect M in system A

and X is similar to Y and A is similar to

B, then change Y is predicted to cause an

effect similar to effect M in system B.

These rules can be used to evaluate the
impact of change Y in system B or to
determine what type of change is needed to
system B based upon experience with svstem
A if a particular effect (similar to M) is
desired.

Use of the traceability model involves arule
structure as follows:

If function X produces only effect A in

system M, and system M no longer

requires effect A, then system M no longer

requires function X.

The cost model will establish a set of
relationships between element in the C2
system and the cost of the C2 system. These
relationships imply rules for inferring change
to C2 system cost as elements of the C2 system
are changed.

Section 2.6.3 developed a list of advantages
of using logic programming. These are
evaluated below according to their realization
in the demonstration system. Many of the
features are so ingrained in logic program-
ming that they are used unconsciously by an
experienced logic programmer, for whom they
are second nature.

1. General Record Structures. These are
used throughout the code. A specific example
is class definitions for user interface
procedures (see init_class/2 in CMLP code).
These are.defined as a list of constants. Yet
some of items in the corresponding elements
(see inst/3 list) will be:

e Integers, as in the number of AMRAAMs
on an interceptor

e “String” constants, as in the name of a
type of armament (e.g., “AMRAAM")

e Terms, representing instances, as in
‘Function’(3)

e Lists of the above

No attention is paid to the differences
between these in designing code to set or get
data.

The list itself is readily extensible; the
procedures that set or get values (set_vval and
get_vval) do not expect a certain number of
attributes. They simply work uniformly with
what they find.

2. Built-In Pattern Matching. Pattern
matching is used every time a goal is used to
select a procedure, it is used throughout
the code. One example is the procedure

-83-

make_buttons/3, which has five clauses. The
first is

Clause 1: make_buttons(Object,[1,[])

where Object is the reference to the box in
which the buttons are placed. This is a
recursive procedure. The seccad argument is
a list of button specifications and the third a
list of corresponding button items implement-
ing the functionality. Since the second
argument is nil (no buttons to make), so is the
third; this clause is matched at the bottom of
the recursion, with the output list (third
argument) being built on backtracking.

Each of the other four clauses in the
procedure implements a special case of what is
needed from the button. This is picked up by
matching the form of the head of the second
argument, thus:

Clause 2: Name-(Head:-Body)/ButtonID
Clause 3: Name-(Head:-Body)

Clause 4: Name-Pred

Clause 5: Name-*

The arithmetic operators provide a simple
way of structuring related items, and have a
well-defined precedence. This is easier to
understand and more efficient than using a
Lisp-like list [Name, Head, Body, ButtonID],
although this would be equivalent. Each
clause picks up a successively less specialized
case. In Clause 5, the button only has a
name; no action is supplied. In Clause 4,
make_buttons supplies the code to invoke
procedure Pred when the button showing
Name is pressed by the user. The predicate
Pred must be asserted by the user or
otherwise supplied. In Clause 3 the procedure
to be invoked (Head:-Body) is asserted when
make_buttons is executed. (It also retracts
previous versions.) This allows the program-
mer to construct the procedure at execution
time. In the CMLP code, this was done to
minimize the number of calls on the context
knowledge base; ProWINDOWS-generated
references (addresses) can thus be hardwired
into the button-response code. In Clause 2 an

external ButtonID tag is supplied so that
access to the data for the button can be
obtained from the context knowledge base
from external code. This would allow it to
invert or gray the button as an indication of
some internal state to the user.

3. Muitiple Inputs and Outputs. An
example is init_values/3, where the first
argument is bound and is the internal browser
ID, the second returns the list of items to be
formatted and displayed, and the third is a list
of the instances displayed in the second. The
absence of fixed commitments to input and
output variables is a useful feature, but is
limited by the true reversibility of the
procedure. Usually procedures containing
arithmetic evaluations or comparisons are
not reversible. It is, however, usable for
ground terms and is frequently used in
debugging when the programmer wants to ask
such questions as “Where is this data item
stored?” or “What data item is stored here?”

4. Both Declarative and Procedural
Readings. This feature is inherent in CMLP,
as in any Prolog program.

5. Intensional and Extensional Data. Thxs
feature was used often used during program
development.

6. Separation of Logic From Control. This
feature is inherent in CMLP, as in any Prolog
program.

7. Nondeterminism. This feature was not
truly used in the demonstration system.

8. The Logical Variable. This is used
throughout CMLP. See the discussion under
items 1 and 2 above.

9. Natural Interface to Database Manag-
ers. All of the active CMLP data are present in
core. An extended dataset for storage and
reference through the analogy development
model to knowledge bases describing other
baselines could exploit this.

10. Conceptual Level of Representation.
This was the primary motivation for using
logic programming for this task. Although
some structuring is imposed above “vanilla”
Prolog, very little is needed (see the comments
under item 1 above).

Logic programming enabled us to achieve a
very complex program in a very short time,
despite the fact that the tool set we used
{Quintus Prolog and ProWINDOWS) was
immature and provided very little in the way
of development facilities. However, we note
that the Quintus offerings are easily as
mature as other Prolog tools (such as
available from BIM). The next section
summarizes recommendations for develop-
ment environment.

5.1.3 DEVELOPMENT ENVIRONMENT
NEEDS. A more powerful development
environment for Prolog programs than that of
a simple debugger-tracer is long overdue.
Although Quintus supplies an emacs-based
program development interface that “knows”
where procedures and procedure boundaries
are located in the source code, this facility
does little to support programmer productiv-
ity. Extensions needed include:

e Browser-mediated access to data within
the existing code for indexed access to
procedures and list of local variables

e Aids fo identify instantiation structure,
including procedure calls (e.g., when the code
requires a certain number of arguments or a
certain range of structures, this fact should be
identified to the programmer)

e Intelligent program development proce-
dures which would look at the code and
indicate, for example, that the procedure call
had three arguments when the programmer
was changing the definition to four

o Intelligent assistance covering common
coding mistakes

e Test procedure library maintenance and
background invocation

e Graphical displays of program structure

It is an extremely poor use of cycles on a
single-user workstation to wait for the user to
“try out™ a change (usually involving a
real-time wait for recompilation and possibly
screening through copious quantities of
tracing output) when the declarative proper-
ties of logic programming and the ready
availability of inference make background
checking and anticipation readily realizable.

-84

In defense of Quintus, it should be pointed out
that their priority is to port their tools to a
variety of platforms, rather than enhancing
features. With limited resources they cannot
do everytihing.

5.1.4 ALTERNATIVE LOGIC PROGRAM-
MING IMPLEMENTATION APPROACHES.
This section describes how the development
could have been enhanced by a tool set that
provided a higher order construct such as
object orientation through ProTALK and
logic extensions and object orientation
through metaProlog.

5.1.4.1 ProTALK. An equivalent but more
easily maintainable knowledge base defini-
tion could have been achieved in ProTALK
(Quintus, 1988a), an object-oriented Prolog
system. ProTALK version 0.1 as supplied with
the ProWINDOWS package (Quintus, 1988b)
used to build the user interface seemed to be
effective when tested. However, it is
unsupported, so we adopted the more
conservative approach of first bringing the
system up with a reliablé simple representa-
tion. While the current temporary definitions
are clearly inefficient in use, this did not lead
to noticeable delays in normal operation of
tne CMIP demonstration.

ProTALK permits the dynamic instantia-
tion of modifiable objects, a class hierarchy,
and dynamic delegation. It is compatible with
ProWINDOWS, which is also object oriented,
and uses some of the same predicates.

In this implementation of object-oriented
programming, sending an object a message is
equivalent to calling a fixed procedure.
Matching and execution can thus be very fast.

The objects defined in ProTALK have the
same kinds of properties as the objects
required for CMLP Objects can be created
and destroyed dynamically. Data in objects
are stored as attribute-value associations.
The values of attributes may be retrieved
(this, in ProTALK, is achieved, as is all
computation, by sending an object a message).
Each object is a member of class, which
provides it with properties. These classes
are hierarchically organized. (In ProTALK,

-85-

the hierarchy provides more than data—
arbitrary computational methods.) Also,
pattern matching and backtracking may be
used to enumerate the members of a class, as
in CMLP In addition, ProTALK provides both
delegation and initialization. With the former
facility, objects can delegate some of their
behavior to other objects. Such delegations
are dynamically modifiable. With the latter,
every class has an initialization method called
upon instantiation.

These capabilities would be used in five
principal ways:

1. Provide an Expansible Class Hierarchy.
This is a primitive of ProTALK and should
therefore be efficient and reliable.

2. Simplify Data Access. The simplicity of

~ the knowledge representation scheme used in

the CMLP demonstration has certain draw-
backs. One is that some inferences are
“long-winded,” as discussed in Section 4.2.2
under inference.

3. Speed Up Data Access. The current code
for representing the values of an instance is as
a list of values. To access a value for an
attribute, the code steps though a list of
attributes for the class in lockstep with the
list of values. This process, although adequate
for knowledge bases of the size and complexity
of CMLP knowledge bases, could be too
inefficient for a scaled-up version. The
representation in ProTALK is much more
efficient, since it involves representing the
attribute name as a functor. Thus the search
for data can use the clause-finding and
argument-indexing facilities offered by
Quintus Prolog. (The downside is that there
are also many more terms in the database—at
least one for every attribute-value pair.)

4. Simplify User Interface Code. The
CMLP browsers and composite browser could
use the message-passing and private data of
ProTALK's objects with very desirable effects
on simplifying the code and thus making it
more maintainable.

5. Prouvide Tighter Control on Acceptability
of User-Supplied Vu.ues. ProTALK provides
an entry argument for each attribute, called a

“facet.” Facets are used for metaknowledge
and attached procedures and would be used in
validation/verification processing.

.5.1.4.2 MetaProlog. MetaProlog (Bowen
and Weinberg, 1985) is an approach to
redressing the difficulties associated with
assertion and retraction. These difficulties

include the fact that there is no definition of”

first-order proof in which the set of axioms is
not fixed. This undermines the very basis of
logic programming.

In metaProlog, a proof is obtained via the
predicate demo:

demo(Theory,Goal,Proof)

whose correctness and completeness are
specified by:
1. Ifdemo(Theory,Goal,Proof), then Goal is
derivable from Theory by Proof
2. If Goal is derivable from Theory wvia
Proof, then demo(Theory,Goal,Proof).
In this predicate, Theory corresponds to the
set of terms and clauses defining the program
in a regular Prolog program. Goal is the goal
to be proved, and Proof is the proof tree, to be
used for explanation or other purposes. The
key difference from regular Prolog is that
instead of the logic-destroying predicates
assert and retract, metaProlog provides:

addto(Theory,Axiom,NewTheory)

dropfrom(Theory,Axiom,NewTheory)

Thus the proof in demo/3 is carried out on
an unchanging set of axioms (i.e., theory).

MetaProlog also allows the specification of
multiple theories, as in:

demo(Theory1&Theory2,Goal,Proof)

with the interpretation that if a required
axiom is not found in Theoryl, it will be
searched for in Theory2. This allows for the
hypothecation of axioms, such as:

demo([H1,H2 H3]&Theory,Goal,Proof)

where the hypothesized axioms H1, H2 and
H3 will be searched before those in Theory.
The programmer (or program) could amend
the list of hypothesized axioms until a Proof
with desired properties had been produced.

-86-
—

Bowen and Weinberg (1985) address other
issues, including the use of qualification and
relationships with parallel processes. They
recognize efficiency problems, and had not, as
of the writing of their paper, produced a full
implementation. The work is, however, very
promising in filling an important theoretical
and practical gap in the rigorous application
of logic programming.

MetaProlog could be very useful in design
problems such as the CMLP application. It
would provide a well-founded approach to the
representation of system updates, and it
would also manage the space of hypotheses
generated and evaluated by the user. For
example, in the SWaT model the user may
alter various settings for priority (of target,
weapon platform, and armament), number of
engageable threat, and so on. The updates
between a CALC within a trial would be
prepended to the current (or initial) settings,

thus:

demo(UpdatedValues&CurrentTheory,
Goal,Proof)

As the user specified UpdatedValues by
interacting with the user interface, the
successive sets of changes would be retained.
The user could then review and select from
these changed sets when creating new ones.
When the user pressed CALC, the list of
contexts would be collerted backwards
(upwards in the hierarchy) so that the oldest
changes would be last and appended to the
CurrentTheory. Newer changes would then
mask older changes to the same values. A new
function would be defined to coalesce the
updates in such a list {(overriding older values
as before), thus producing a saved new single
update set that would then be made available
to the user as before. Unfruitful branches in
the space could then be pruned.

MetaProlog would have been a useful
facility to have available within the Quintus
Prolog environment used for implementation.
However, it is not currently available as a
separate module. Interpreting metaProlog
concepts into Quintus Prolog as alterations to

the proof procedure code would not be

efficient.

5.1.5 USER INTERFACE FOR CMLP
DEMONSTRATION. The CMLP software
requirements specification developed usabil-
ity requirements for the user interface. Our
evaluation against these requirements is
given in Table 5-1.

5.2 APPLICATION OF CONCEPTUAL
MODELING AND LOGIC
PROGRAMMING TO C2 DESIGN

In this section we evaluate the potential of

CMLP technology to support the C2 process

by considering how successful the conceptual

representation of C? systems described in

Section 3.2 would be in fulfilling the goals

described in Section 3.1. For each goal we

attempted to answer the following eight
questions, achieving the answers summarized

- in Table 5-2 and discussed goal by goal below.

o What is the priority of this goal and the
CMLP features to implement it?

e Is use conceptually difficult? This
criterion evaluates whether the typical user
will be able to understand the nature of the
operations to be performed and perform them
correctly.

o Does use require difficult manipulations?
This criterion evaluates whether this particu-
lar function can be accomplished easily using
a user-friendly interface.

o Will the process be accurate and
consistent? This question evaluates whether
the process can be performed in a way that
will be accepted as being true by C2 designers.
Since many of the goals are conceptual rather
than numeric, there is no “accurate” answer.
Consistency deals with whether the same
results will be repeatable across typical users
or even by the same user from day to day.

o What utility can be gained from this
proczss? This question evaluates what utility
can be achieved by the C? designer if the goal
is achieved, and also the expectation as to
whether the goal will be achieved.

o Will CMLP use provide more convenient
analysis? This question evaluates whether

the C? designer will be able to more easily
achieve the desired outputs.

e Will CMLP use provide a better analysis
product? This question evaluates whether an
analyst can do a better job with CMLP,
independent of the time that it takes him to do
the job.

e [s experimentation needed to improve this
evaluation? Many of the answers to the first
six questions will be uncertain. This question
will therefore evaluate whether the CMLP
design team would recommend a program of
further experimentation to improve the
design product.

1. Analyze Performance by Computation.
Goal 1 pertains specifically to the potential of
the SWaT model described in Section 3.2.2.
Concepts for the SWaT model range all the
way from simple rules of thumb to detailed
evaluations that consider location of sensors,
weapons and threats. A major concern is
estimating the effect of C2 systems. While we
have been able to incorporate some C2 rules of
engagement in the demonstration system
SWaT model, it is extremely difficult to
provide the degradation caused by less than
perfect C2. The demonstration SWaT model
does not include a temporal analysis and
hence cannot predict degradation due to
response time or evaluate concepts such as
shoot-look-shoot effectively. Also, the demon-
stration system model includes only the
capability to deal with the first attack. It may
be possible to include consideration of waved
attacks, and if this is done the model should
also estimate defensive system losses to allow
evaluation of resources available for the
second wave.

SWaT model performance may be improved
by using simulations describing a variety of
threat attacks to anchor a mathematical
model. Even without a simulation, the user
may correct an output from a CMLP model
based upon any data that he may have on
expected system performance.

~87-

Table 5-1. Evaluation of User Interface

Completeness of Coverage

Criterion: The designer should have at his disposal all information necessary to assess and
apply the repertoire of established system enhancements, or to enter new ones.

Evaluation: Excellent

Comment: The baseline database is large and consists of many disparate types of data. It is
broken down by element and high-level summaries are provided. Data items are formatted in
user terms, rather than reflecting the internal organization of the knowledge bases. Provision is
made, via browsers, for ihe display of arbitrarily large numbers of system components. The
displays of system components are grouped in a manner both meaningful to the user and
within the context of the sequential usage of CMLP (e.g., the definition of range bins on the
sensor form).

Symbolic Interaction

Criterion: To maximize the utility of the design aid, the user should be required to perform a
minimum of direct programming. That is, the objects and relations that constitute the system
should be accessible in symbolic form at the appropriate level of abstraction.

Evaluation: Excellent

Comment: The user is never required to know anything of the internal representation in CMLP
and is never required to program. The knowledge representation scheme is completely
transparent to the user, who thinks merely in terms natural to one designing C2 systems.

Explanation

Criterion: 1t is desirable for the system to be able to explain its actions and recommendations.
This will be restricted in the CMLP demonstration to permitting the user to review selected rules
that result in an inference.

Evaluation: Good
Comment: Explanation facilities are limited in the manner stated.
Consistency of Interface

Criterion: The means of interacting with the symbolic components of the mterface should be
consistent across type and across function.

Evaluation: Excellent

Comment: The behavior of buttuns, menus, and all other means of interacting with symbolic
components is completely uniform across the entire user interface. The only exceptions occur
when the pragmatics of providing a simple and natural user interface outweighed the dictates
of formal requirements. For example, in the SWaT model selecting a line in the modifiable
browsers leads to a MODIFY. In the main, other browsers allowing modification also allow other
actions, and so require election plus the use of a specific button. Where a single MODIFY
application-specific application buttaon is used, this is to maintain consistency within the form.

Mixed Initiative Dialog

Criterion: The system should do what it does best; the designer should concentrate on his
design problems. The system should therefore assume the burden for all activities which it can

-88-

Table 5-1. Evaluation of User Interface (continued)

support without input from the user; this amounts to all of the housekeeping functions. The
system should interact with the user in a way that exchanges responsibility for directing the
man-machine dialog smoothly and in terms of which entity —the user or the computer —can
most efficiently carry out a processing step.

Evaluation: Excellent

Comment: The user is never required to do something the system could. Because of the nature
of the C2 system design process, CMLP does not do a great deal of stand-alone inferencing
(unlike the stereotypical expert system), but where inferences can be made (as in impact
assessment) they are. Most decisions and judgments are made by the user. Aimost all the
information that could be desired by the user is usually zero, one, or two mouse-clicks away.

Progressive Disclosure

Criterion: The designer should not be overcome with too much data when what he wants is
information. Information should be portrayed at a variable level of granularity, and the designer
should be able to vary this level with his objectives. Information should be prioritized and
displayed in order.

Evaluation: Excellent

Comment: Progressive disclosure is used extensively throughout the user interface, starting
with the summary. The user needs only to click in the relevant box and the detailed form
becomes available. Within a form, the progressive disclosure is used widely. For example,
when the user clicks on a weapon platform in the weapon specification form, its armaments
appear; and when the user clocks on an armament, its probability of kill against the targets
appears.

Communication

Criterion: Members of the C2 system design team shoulc be able to share information.
thoughts, and hypotheses using the system as a medium.

Evaluation: Good

Comment: CMLP has been designed for a single user at a time, but provision is made for
storing comment fields with the knowledge bases. The tool can make knowledge bases
accessible to other users and thus facilitate communication. No inter-user mail zapability or
user group system will exist, but the SunView mail-tool may be run independently within the
CMLP windowing environment.

Training
Criterion: A basic “help” subsystem is provided.
Evaluation: Good

Comment: Context-sensitive help is available inside most of the boxes of each form. In future
versions, help tailored to the skill level of the user could be provided. Since ProWINDOWS
views do not generate an entry_message, passage of the mouse into them is not detectable,
so the help system does not operate for windows such as description or comment windows.

Adaptivity

Criterion: The system should reflectthe goals, skills, and background ofthe user. It should also
change as the user develops greater facility for interacting with the system. A certain amaunt of
personal customization of the interface is also useful.

-89-

Table 5-1. Evaluation of User Interface (continued)
Evaluation: This has not been provided in the CMLP demonstration system.

Comment: There are no provisions within the delivered CMLP for user adaptivity, although
“hooks” have been provided and the knowledge representation system is adequate to
represent different user types.

Table 5-2. Evaluation of CMLP Goals

. Analyze Performance by Computation

Priority? High

Conceptually Difficult? Limited model may force innovative use
Require Difficult Manipulations? No

“Accurate” and Consistent?
e Difficult to include C? effect except by simulation
e Questionable whether CMLP models can be anchored

e Possibie that if CMLP requires user to “correct” conclusions, he will lack confidence in
results ,

What Utility?

Potential Benefits: Can provide rule-of-thumb to reduce need for simulation-based
evaluation

Achievability: In some form
More Convenient? Yes
Provide Better Product? Yes, if user understands process

Further Experimentation Needed? Try different levels of detail in SWaT model, perform
experiments on other systems

. Analyze Performance by Simulation
Pric-ity? Very high, but may be too expensive
Conceptually Difficult? No

Require Difficult Manipulations? Defining complete set of simulations and interpreting data
are difficuit

“Accurate” and Consistent? Should be more accurate than current manual approaches

What Utility?
Potential Benefits: Provides accurate techniques for evaluating C2 performance
Achievability: To be determined

More Convenient? High potential
Provide Better Product? Very high potential
Further Experimentation Needed? Yes; may be very high cost

-90-

Table 5-2. Evaluation of CMLP Goals (continued)
3. Analyze C2 Performance by Goal Scoring
Priority? High
Conceptually Difficult? No
Require Difficult Manipulations? No
“Accurate” and Consistent? A majcr concarn; see text

What Utility?

Potential Benefits: Provides alternative to simulation, forces thoughts on concepts for
imorove C2, uses natural cognitive techniques

Achievability: Excellent
More Convenient? Yes
Provide Better Product? Yes

Further Experimentation Needed? Experiment with multiple users, one user over time, levels
of self-defined goals

4. Analyze C2 Capacity Constraints
Priority? Medium
Conceptually Difficult? No
Require Difficult Manipulations? No
“Accurate” and Consistent? Yes .

What Utility?
Potential Benefits: Helps user define and understand capacity issues
Achievability: May be difficult to define models (e.g., computers with spaghetti code)

More Convenient? Yes
Provide Better Product? Yes

Further Experimentation Needed? Try to develop capacity models for processor
computations, memory, C2 operators, communications links, I/O devices

5. Analyze System Life-Cycle Costs
Priority? High
Conceptually Difficult? No
Require Difficult Manipulations? No
“Accurate” and Consistent? Yes

What Utility?
Potential Benefits: Combine costs with other evaluation data
Achievability: Excellent

91~

Table 5-2. Evaluation of CMLP Goals (continued)
More Convenient? Yes; cost data parameters can be estimated from other C2 systems
Provide Better Product? Yes
Further Experimentation Needed? No
. Identify Effect of Changes in Other Parts of System
Priority? High '
Conceptually Difficult? No
Require Difficult Manipulations? No

“Accurate” and Consistent? Yes, but new rules may be needed for some systems, may want
to limit number of rules

What Utility ?
Potential Benefits: Provides more complete identification of change
Achievability: Excellent

More Convenient? Very large rule set may be needed to cover a wide variety of systems, and
user will have to understand and evaluate each rule

Provice Better Froduct? Yes

Further Experimentation Needed?
e Many C2 systems
e Level of detail/threshold for including rules

. Define Options Based on Similar Situations
Priority? High

Conceptually Difficult? No

Require Difficult Manipulations? No
“Accurate” and Consistent? Yes

What Utility?
Potential Benefits: Provides user with concepts “proven” on other systems
Achievability: Excellent

More Convenierit? Yes

Provide Better Product? Yes

Further Experimentation Needed? Proof-of-concept experiments
. Evaluate Options Based on Similar Situations

Priority? Medium

Conceptually Difficult? No

Require Difficult Manipulations? No

-92-

10.

Table 5-2. Evaluation of CMLP Goals (continued)
“Accurate” and Consistent? Yes

What Utility?

Potential Benefits: Provides “experience” data from other systems to perform
evaluation/provide data

Achievability: Excellent
More Convenient? Yes
Provide Better Product? Yes

Further Experimentation Needed? Proof-of-concept experiments

. ldentify Requirements/Design Dependence

Priority? Medium

Conceptually Difficult? No

Require Difficult Manipulations? No

“Accurate” and Consistent? Depends on knowledge base

What Utility?
Potential Benefits: ldentifies which design features are not needed
Achievability: Many cases too complex '

More Convenient? Requires very large database - -

Provide Better Product? Yes

Further Experimentation Needed? Develop, populate, and use a traceability model
Collect Data

Priority? High

Conceptually Difficult? No

Regquire Difficult Manipulations? No

“Accurate” and Consistent? Yes

What Utility?

Potential Benefits: Organizes and makes though processes consistent, should enhance
creativity

Achievability: Excellent

More Convenient? Yes, but may require user to collect mcre datathan he is usedto, andthan
he needs

Provide Better Product? Yes

Further Experimentation Needed? Measure user’s reaction to process

-93-

11.

12.

13.

Table 5-2. Evaluation of CMLP Goals (continued)
Identify Needed Data
Priority? High
Conceptually Difficult? No
Regquire Difficult Manipulations? No
‘Accurate” and Consistent? Should be

What Utility?
Potential Benefits: Ensures that user considers relevant data
Achievability: Yes, through two alternative approaches:
¢ CMLP design incorporates multipie levels of detail
e CMLP accepts available data, evaluates if each analysis can be performed

More Convenient? Yes

Provide Better Product? Yes

Further Experimentation Needed? Evaluate alternative approaches
Provide Data From Knowiedge Bases

Priority? High

Conceptually Difficult? No

Require Difficult Manipulations? No

“Accurate” and Consistent? Yes

What Utility?
Potential Benefits: Saves user from hunting down data by providing “similar” data
Achievability: Affected by hardware issues

More Convenient? Yes
Provide Better Product? Yes

Further Experimentation Needed? Evaluate whether CMLP can identify and control similar
data)

Check Data Against Own Knowledge Base
Priority? Low

Conceptually Difficult? No

Require Difficult Manipulations? No
‘Accurate” and Consistent? Yes

What Utility?
rotential Benefits: Improves data quality
Achievability: Excellent

14.

15.

16.

Table 5-2. Evaluation of CMLP Goals (continued)

More Convenient? Most users prefer using tools to search and present data, rather than
reviewing data entered

Provide Better Product? Yes

Further Experimentation Needed? No
Evaluate Change to System

Priority? Medium

Conceptually Difficult? No

Require Difficult Manipulations? No
‘Accurate” and Consistent? Should be
What Utility?

Potential Benefits: Aids in evaluating current performance and design concepts by
organizing approach, providing evaluation data

Achievability: C? performance evaluation is satistactory only with simulation interface;
multiple evaluations are possible

More Convenient? Yes

Provide Better Product? Yes .

Further Exp.erimentation Needed? Variety of evéluation techniques, different user
Compare Changes to Syﬁtem

Priority? High

Conceptually Difficult? No

Require Difficult Manipulations? No

‘Accurate” and Consistent? Should be

What Utility?
Potential Benefits: Allows evaluation of alternative fixes
Achievability: C2 evaluation is the key, clearly achievable with simulation

More Convenient? Yes

Provide Better Product? Yes

Further Experimentation Needed? Variety of evaluation techniques, different users
Evaluate C2 Performance

Priority? High

Conceptually Difficult? No

Require Difficult Manipulations? No

“Accurate” and Consistent? Unknown

-95-

17.

18.

Table 5-2. Evaluation of CMLP Goals (continued)

What Utility?

Potential Benefits: Allows designer to measure C2 design concepts, status C2
performance

Achievability: Through three alternative concepts: simulation, improved SWaT models.
goal evaluation

More Convenient? Yes
Provide Better Product? Depends on concept selected

Further Experirmentation Needed? Experiment with goal assessment, SWaT improvements.
development of simulation and interface

Evaluvate Deployment Strategies
Priority? Medium/low

Conceptually Difficult? No
Require Difficult Manipulations? No

“Accurate” and Consistent? Yes

- What Utility?

Potential Benefits: Allows comparison of alternative deployment strategies based on
funding constraints .

Achievability: May be difficult owiﬁg to C2 evaluation issues
More Convenient? Yes
Provide Better Product? Yes
Further Experimentation Needed? Of low priority*
Compare Design Changes Across Systems
Priority? Medium/low
Conceptually Difficult? No
Require Difficult Manipulations? No
“Accurate” and Consistent? Unknown

What Utility?
Potential Benefits: Allows prioritization of system developments
Achievability: May require different model; see text

More Convenient? Unknown
Provide Better Product? Unknown

Further Experimentation Needed? Development of concept

~96-

Use of a SWaT model should save very much
time, even if a detailed system simulation is
available, in evaluating defensive system
response to projected changes in threat. The
SWaT model can suggest not only changes
needed in existing sensor and weapon
systems, but also new concepts of engage-
ment, such as engaging the threat earlier in
order to bring more assets to bear.

Evaluating the effectiveness of a SWaT
modeling concept would require experiment-
ing with incorporating different levels of
detail in the model and with some source of
system truth, such as a simulation. We
recommend that this experiment and analysis
be performed.

2. Analyze Performance by Simulation. A
SWaT model that includes consideration of
time is equivalent to a simulation. Goal 2
deals with creating a simulation interface
within the conceptual modeling system so
that simulation can be run and its output data
interpreted. The simulation interface would
have to generate all of the inputs associated
with simulations. When evaluating concepts
for a design change, this may entail
generating the simulation model of the design
change to the system. Also, we note that it is
difficult to determine in advance what
parameters may affect a particular evaluation
problem and to generate a simulation plan
that will vary all of them. Another area of
concern is interpretation of simulation
results, particularly when a large number of
parameters are involved.

A CMLP tool capable of driving a
simulation can perform fast conceptual model
evaluations when that is appropriate and
periodically validate those evaluations by
detailed simulations. This process should aid
the user in understanding the C2 design issues
and should lead to highly accurate results.
This process is therefore expected to have a
very high payoff as a CML<t cuncept.

Further evaluation of the simulation
interface concept is needed to establish proof
of principle. The experiment requires not only
a CMLP tool, but also a flexible simulation

-97-

that includes C2? detail. To effectively
incorporate a knowledge base-driven simula-
tion plan and setup, the simulation should be
organized in a pure object-driven sense. Also,
the simulation should include clear measures
of performance that can be analyzed by the
CMLP tool to produce a measurement of
interest to the CMLP user. This experimenta-
tion is likely to be of high cost.

3. Analyze C2 Performance hy Goal
Scoring. Since concepts suggested by goal 1
are not likely to evaluate C? very well, and
concepts associated with goal 2 are likely to be
expensive and difficult to use, an alternative
form of C2? system evaluation is of high
priority. Goal 3 addresses the potential of
developing a goal evaluation model that can
use both generic and specific goals for a
particular C2 system. The concept is
attractive in that goal evaluaticn is a common
cognitive evaluation process. A SWaT model
can provide an indication of perfect C2
performance, and a goal evaluation system
may indicate the nature of degradation
associated with the C2 system. A side product
of goal evaluation is that identifications of
unsatisfied goals should directly suggest
improvements to the C2 system.

The major issue associated with goal
evaluation is that it is subjective and hence
likely to produce different results when used
by different people. ! L+ may tend to make the
results of this appr¢- unacceptable to the
C? community. On the other hand, the goal
evaluation model may be used to expose such
differences, make them explicit, and point the
way to research and resolve them. Goal
evaluation can also generate new ideas for C?
designers through comparison to other
systems. For example, air defense weapon
assignment and weapon control are largely
manual operations performed in sectors, with
overlap in responsibilities and providing
higniy nunoptimal resuits. Computer, man-
machine interface, and algorithmic capability
being developed for the Strategic Defense
Initiative could greatly improve the use of
interceptor and missile systems against air

defense attack. Use of a CMLP goal
evaluation model would help focus on these
issues. Investigation into the use of goal-
based evaluation is thus highly desirable. The
investigation should include experiments
employing multiple users and experiments
employing one user over time in slightly
different circumstances, and should permit
the user to define his own goals.

4. Analyze C2? Capacity Constraints.
Physical capacity constraints include com-
puter processing speed, computer memory
size, the amount of work that a person or
group of people can do, and the amount of data
that can be passed (1) across a communica-
tions link, (2) from a manned input device
(terminal) into a computer system through
communications equipment, or (3) through
computer interfaces. The load on a capacity-
limiting device can usually be predicted by
simple mathematical formulas operating
upon the number of instances to be modeled
over a fixed period of time. The instances
include elements of threat, the number and
types of reporting sensors, and the numbers
and types of weapons to be controlled. While
the loading is likely to behave according to
simple mathematical processes, the processes
may be very difficult to define from available
but very complex inputs, such as the computer
software listing.

Experimentation is highly desirable
through generating a variety of capacity
models from alternative input sources.
Additional experimentation is needed to
determine whether there are ranges of input
for which the loading is not easily predictable.

5. Analyze System Life-Cycle Costs. Cost
and units of fiscal-year cost are the major
constraints associated with development of
C2 systems. Therefore it is extremely
important that the conceptual model have the
akility to compare cosit against other
performance measures. A conceptual model-
ing process that incorporates cost along with
other factors may provide a uniform database
for evaluation. As CMLP cost models are
developed for multiple C2 systems, data may

be interchanged, providing better and more
convenient data generation.

6. ldentify Effect of Changes in Other
Parts of System. The CMLP system should
have the capability of cuing the user to
potential model changes associated with one
or more changes being evaluated in other
areas. A concept for implementing this change
is discussed in Section 3.2.8, Systems
Sensitivity Model. The benefits gained from a
system sensitivity model will depend on the
rules established within the model. The model
will need a large database of routine rules that
are fairly obvious. However, to be effective it
will also need to suggest to the user things
that he may not have considered. For example,
one air defense concept for dealing with more
concentrated attacks (or higher threat
density) is to extend the geographic range
under which the threat can be engaged, and
then send out the response early in the attack.
This type of change will not necessarily be
obvious to someone who has been working on
the system for a long time and who will thus
tend to use establish procedures within the
system.

The system sensitivity concept should have
a high payoff. The major issue is the number of
rules that should be included within a generic
model. The threshold on whether to include a
particular rule is based upon the probability
that the rule is likely to represent a C2 system
sensitivity. As the threshold is lowered, the
CMLP system will suggest many more areas
of change that the user must evaluate. As the
threshold is raised, fewer rules will be
included within the CMLP system and
significant areas may fail to be identified for a
particular analysis. Thus evaluation of the
level of detail of sensitivity rules is a
high-priority experiment for furtherance of
CMLP technology.

7. Define Qgtions Based on Similar
Situations. Two goals are associated with the
concept of analogy development, discussed in
Section 3.2.9, which allows users to benefit
from the experience of previous system users.
In the first, the CMLP system can use analogy

-98-

-—_

development to find possible fixes for a
particular problem by searching its knowl-
edge bases for other C2 systems that have had
similar problems. Assume, for example, thata
user expected enemy forces to be able to
overrun a defensive system he was evaluating,
i.e., that we could not bring enough weapons
to bear to protect a high percentage of our
assets. If proposed SDI system concepts were
modeled in a CMLP database, the air defense
user might be able to extract from that
database the SDI concept of adaptive
preferential defense. That concept analyzes
the assets within one class to determine which
are most likely to be attacked and then
concentrates the defense on those assets.
Clearly this can be done much more
accurately for strategic defense, where the
threat follows a ballistic trajectory, than in an
air defense system, where the bomber and
cruise missile threats follow a devious
trajectory to their targets. Nevertheless, the
concept may offer some benefit in the air
defense world. The payoff for analogy
development of this type would be maximized
if the CMLP system stored all uses of the tool,
regardless of the user’s assessment of the
results.

8. Evaluate Options Based on Similar
Situations. The second goal concerned with
analogy development relates to evaluating the
magnitude of a design change’s effect by
examining the effects of similar changes in
other C2 systems. Again, the utility of analogy
development is greatly enhanced if a large
amount of data is stored by the previous users.
An issue associated with analogy develop-
ment is that the data previously stored may
not be validated data in the sense that they
may not be considered accurate by the current
user (or, for that matter, by the original user).
Also, it is highly likely that the new user will
need to verify the validity of the analogy made
by the CMLP tool. INcvertheless, analogy
development is an important CMLP concept
requiring proof-of-concept experiments.

9. Ildentify Requirements/Design Depen-
dence: Conceptual modeling is an appropri-

99—

ate way to develop requirements-to-design
traceability models that allow the user to
infer a possible design change as require-
ments change. We see two impediments to
achieving this goal. The first is that a
mapping of requirements to design functions
for complex C? systems may involve an
extremely large database. The second is that
the design may be very interconnected.

The previously cited F-111 example serves
to illustrate this point. The requirement to
land on sand beaches leu to engine inlet flaps
to prevent the ingestion of sand and to very
large tires to support the plane on sand. While
the inlet flaps would be directly traceable to
the sand-landing requirement using a
requirements-to-design tool, the situation for
the tires would not be traced so easily. Tire
size is directly related to a large number of
factors, including the pressure needed to bear
the aircraft weight, the tread design needed
to stabilize tire contact with the runway,
acceleration and stopping distances, and,
finally, the requirement to land on sand. Thus
it may be difficult to arrive at the suggestion
to change to smaller tires based on using
a requirements-to-design traceability model,
but easy based on comparing the F-111 design
to that of another aircraft.

Experiments on the utility of the
requirements-to-design traceability model
are needed if this capability is to be included
in the conceptual model. We believe this to be
of lower priority than the experiments
suggested in other areas.

10. Collect Data. One major benefit of the
conceptual modeling process will be the
convenient handling of data to support
command and control designer analysis. The
process of organizing data through a carefully
designed knowledge base will greatly benefit
the designer in organizing his own thoughts
on the C? system. However, this may force the
user to locate and input more data than he
feels is warranted by the process that he is
working on. One reason is that he may never
before have used all of the relevant data.
Another is that the fact that it is generic may

cause the CMLP model to ask for more data
than needed. We believe that the data
organization process will greatly benefit C?
designers but see the need for further
experimentation to validate that principle for
a variety of alternative users.

11. Identify Needed Data. This goal
relates to having the CMLP model help the
user identify data he needs. For a SWaT model
expanded to allow more accuracy by
consideration of alternative effects (e.g.,
geographical area, temporal, environmental),
the user may need to provide additional data
such as how many of our interceptors we
might lose in the process of attacking each
type of enemy air threat, and also provide all
of the parameters associated with a second-
wave attack. In the cost area, a particular
analyst may want to include detailed life-cycle
cost terms such as the cost of maintaining an
interceptor aircraft in inventory, and may be
given the option of evaluating this cost based
on historical data in the database or
personalizing it to develop the distinction
between cost associated with a single-pilot
F-16 and a dual-crew F-15.

There are two alternative concepts for
implementing this goal. One is that the CMLP
design be developed with multiple levels of
detail to support different analysis processes.
This means that as the user populates the
database, he must tell the CMLP model what
he wants to do with the database, and then the
model can tell him what data he needs. The
alternative approach is to have the CMLP
system attempt the data analysis after the
user has input the data readily available to
him. In this approach the CMLP tool must
identify which analyses cannot be reliably
performed and alert this fact to the user so
that he can either provide more data or decide
not to rely on a particular analysis. Further
research is needed to evaluate the two
concepts.

12. Provide Data From Knowledge Base.
Considerable user time can be saved and
consistency improvements achieved if the
CMLP tool incorporates a capability of

providing data from the knowledge bases
established in previous analyses. This
capability might be provided by having the
system search its knowledge base and provide
data to the user for review before storing the
information in a particular baseline system.
Experimentation is needed to evaluate the
approach and determine the utility of data
from analysis of other C2 systems.

13. Check Data Against Own Knowledge
Base. Providing the CMLP tool with a
capability to check data against data already
in its knowledge base has similar payoffs to
those of goal 12. The approach would be to
have the CMLP system check user-supplied
data against other data stored during
previous sessions. Experimentation similar
to that recommended for goal 12 is
recommended.

14. Evaluate Change to System. Goal 14 is
the first of five relating to the end purpose of
the CMLP user in a particular session or
group of sessions. Goal 14 specifically relates
to an an absolute evaluation of the impact of a
system change. We judged this goal to be of
only medium priority because it is not clear
that an absolute measure is needed. Achieving
this goal will depend on how well the system
can perform the simulation and other
evaluations discussed for the first five goals.
The difficulty is that the tool will produce an
evaluation that incorporates many factors;
the evaluation will itself require evaluation.
This issue requires research using a variety of
evaluation techniques. Involving different
users in the experimentation process will
determine the sensitivity of results to
particular users.

15. Compare Changes to System. Goal 15
relates to comparing alternative changes
within a system. This capability is the key to
CMLP success because it would allow the user
to evaluate alternative approaches (fixes) to
an undesirable situation and justify changes
to C? rather than requiring more weapons or
better sensors. For example, a C? designer
may wish to use the CMLP tool to identify C2
improvements to deal with a projected threat

-100-

]

increase, as an alternative to very expensive
sensor and weapon improvements. Such a C2
improvement might be achieved by more
effective weapon-target assignment algo-
rithms or by the capability to tell and use data
from all available sensors to reduce depend-
ence on sensor survivability. Displaying the
amount of comparative data that might be
desired may be a problem. The demonstration
system showed many benefits of a windowing
interface but was not designed to allow the
user to look at the results of two or more
evaluations at the same time. In fact, we
found it difficult to provide enough room for
even identifying all of the data needed in
conceptual modeling. A large number of
experiments are required on a variety of C2
systems using different evaluation techniques
such as SWaT models, simulations, and goal
scoring.

16. Evaluate C2 Performance. Goal 16
relates to the capability to evaluate C2 system
performance. This capability is of high
priority as it allows absolute evaluation of C2
design concepts. Absolute measures of
performance may be needed to allow
comparison of changes from system to system,
such as might be required in formulating a
position on which of two or more C2 systems
more urgently needs funding in the near term
(assuming goal 18 is not satisfied). Issues
include defining the measures of performance
and selecting simulation, SWaT, or goal-
scoring approaches for specific design tasks.
Extensive experimentation is required in this
area.

17. Evaluate Deployment Strategies.
Goal 17 relates to the evaluation of
deployment strategies in order to make the
best defensive system available at each
deployment stage subject to fiscal constraints.
This is of medium or low priority since there
may be easier ways to approach the problem
and deployment plans are highly constrained,
reducing choices. Data collected in associa-
tion with the evaluation of goal 14 will help
determine the capability of the CMLP system
to support the present goal.

18. Compare Improvements Across Sys-
tems. Goal 18 deals with the need for
comparison of design changes across a variety
of systems. This capability could be used by
funding control agencies to set development
priorities. We do not believe that this is the
most likely use of the CMLP tool. Compara-
tive evaluation is difficult in that measures of
performance on one system rarely relate
directly to measures of performance on
another. In addition, comparative evaluation
does not facilitate consideration of the overall
defense posture. A different conceptual model
might be needed to approach this goal. Such a
model would have to recognize the overall
force structure and defense posture of the
particular organization, and incorporate this
posture in the evaluation process. A concept
for doing so is the mission-oriented analysis
that used by NATO for evaluating command
and control systems (see Signori and Starr,
1987).

-101~

BIBLIOGRAPHY

Apple Computer, Inc. (C. Rose, et al.), Inside
Macintosh. Reading, Mass.: Addison-
Wesley, 1985.

Barr, A, and E. A. Feigenbaum, The
Handbook of Artificial Intelligence. Los
Altos, California: Kauffmann, 1981.

Bateson, G., Mind and Nature. New York:
Bantam, 1979.

Battani and Meloni, Interpreteur du Lan-
guage de Programmation PROLOG,
Research Report, Artificial Intelligence
Group. Luminy, France: University of
Aix-Marseille, 1973.

Bendl, J., P Koves, and P. Szeredi, Proceed-
ings of Logic Programmirg Workshop.
Debrecan, Hungary, 1980.

Bobrow, D., L. DeMichiel, R. Gabriel,
S. Keene, G. Kiczales, and D. Moon,
Common Lisp Object System Specification.
X3J13 Document 88-002R, 1988.

Bordiga, A., J. Mylopoulos, 'and ‘H. Wong,
“Generalization/Specialization as a Basis
for Software Specification.” In M. L.
Brodie, J. Mylopoulos, .and J. W. Schmidt

(eds.), On Conceptual Modeling. New York: -

Springer-Verlag, 1984.

Bowen, K., and T. Weinberg, A Meta-Level
Extension of Prolog, Technical Report
CIS-5-1. Syracuse, N.Y.: Syracuse Univer-
sity School of Computer and Information
Science, May 1985.

Brodie, M. L., “On the Development of Data
Models.” In M. L. Brodie, J. Mylopoulos,
and J. W. Schmidt (eds.), On Conceptual
Modeling. New York: Springer-Verlag,
1984.

Brodie, M. L., J. Mylopoulos, and J W.
Schmidt (eds.), On Conceptual Modeling.
New York: Springer-Verlag, 1984.

Bruynooghe, M., “Memory Management of
Prolog Implementations,” Proceedings of
Logic Programming Workshop. Debrecen,
Hungary, 1980.

Bylander, T, ar.2 B. Chandrasekaran, “Gener-
ic Tasks in Knowledge-Based Reasoning.”
In B. R. Gaines and J. H. Boose (eds.),
Knowledge Acquisition for Knowledge-
Based Systems. New York: Harcourt Brace
Jovanovich, 1988.

Church, A., “The Calculi of Lambda-
Conversion,” Annals of Mathematical
Studies No. 6. Princeton, N.J.: Princeton
University Press, 1941.

Clark, K., and F McCabe, “IC-Prolog—
Language Features,” Proceedings of
Logic Programming Workshop. Debrecan,
Hungary, 1980.

Clocksin, W. F,, and C. S. Mellish, Program-
ming in Prolog. New York: Springer-
Verlag, 1984.

Colmerauer, A., H. Kanoui, R. Passero, and
P. Roussel, Une Systeme de Communica-
tion Homme-Machine en Francaise,
Research Report, Artificial Intelligence
Group. Luminy, France: University of

.Aix-Marseille, 1973.

Common Windows Manual. Mountain View,
Calif.: IntelliCorp, Inc., 1986.

Darvas, P, “Logic Programming in Chemical
Information Handling,” Proceedings of
Logic. Programming Workshop. Debrecen,
Hungary, 1980.

Feigenbaum, E., “The Art of Artificial
Intelligence: Themes and Case Studies
of Knowledge Engineering,” Proceedings
of the Fifth International Joint Confer-
ence on Artificial Intelligence, 1977,
pp. 1014-1029. Pittsburgh: Department of
Computer Science, Carnegie-Mellon Uni-
versity, 1977.

-103-

Fikes, R. E., and G. Hendrix, “A Network-
Based Knowledge Representation and Its
Natural Deduction System,” Proceedings
of the Fifth International Joint Conference
on Artificial Intelligence, 1977,
pp. 235-246. Pittsburgh: Department of
Computer Science, Carnegie-Mellon Uni-
versity, 1977.

Gaines, B. R., “An Overview of Knowledge
Acquisition and Transfer.” In B. R. Gaines
and J. H. Boose (eds.). Knowledge
Acquisition for Knowledge-Based Systems.
New York: Harcourt Brace Jovanovich,
1988.

Gaines, B. R, and J. H. Boose (eds.),
Knowledge Acquisition for Knowledge-
Based Systems. New York: Harcourt Brace
Jovanovich, 1988.

Gandee, P L., M. D. Gray, and R. Sweet,
“Evaluating Alternative Air Defense
Architectures,” Signal, January 1987.

Goldberg, A., and D. Robsor, Smalltalk-80:
The Language and Its Implementation.
Reading, Mass.: Addison-Wesley, 1983.

Goodman, D., Hypercard Developers’ Hang-

book. New York: Bantam, 1988. "
Goodman, N., Fact, Fiction, and Forecast.
Indianapolis: Bobbs-Merrill, 1973.
Green, C. C., The Application of Theorem
Proving to Question-Answering Systems,

Report No. CS 138 A1 Memo-96. Stanford, -

Calif.: Stanford University Press, 1969.

Hayes, P, “Computation and Deduction,”
Proceedings of the Second Symposium on
Mathematical Foundations of Computer
Science, pp. 105-118. Czechoslovak Acad-
emy of Sciences, 1973.

Hayes-Roth, E,, D. A. Waterman, and D. Lenat
(eds.), Building Expert Systems., Reading,
Mass.: Addison-Wesley, 1983.

Hewitt, C., and P deJong, “Open Systems.”
In M. L. Brodie, J. Mylopoulos, and
J. W. Schmidt (eds.), On Conceptual Mod-
eling. New York: Springer-Verlag, 1984.

Hogger, C. J., Introduction to Logic Program-
ming. London: Academic Press, 1984.

Jensen, K., and N. Wirth, Pascal User Manua!l
and Report. New York: Springer-Verlag,
1978.

Johnson, P E., 1. Zaulkeman, and S. Garber,
“Specification of Expertise.” In B. R.
Gaines and J. H. Boose (eds.), Knowledge
Acquisition for Knowledge-Based Systems.
New York: Harcourt Brace Jovanovich,
1988.

KEE User’s Guide. Mountain View, Calif:
IntelliCorp, Inc., 1986.

Keene, S., Object-Oriented Programming in
COMMON LISP: A Programmer's Guide
to CLOS. Reading, Mass.: Addison-Wesley,
1988.

Kernighan, B., and D. Ritchie, The C
Programming Language. Englewood
Cliffs, N.J.: Prentice-Hall, 1978.

Kornell, J., “Formal Thought and Narrative
Thought in Knowledge Acquisition.” In
B.R. Gaines and J. H. Boose (eds.),
Knowledge Acquisition for Knowledge-
Based Systems. New York: Harcourt Brace
Jovanovich, 1988.

Kowalski, R., “Predicate Logic as a Program-
ming Language,” IFIP Congress,
pp. 569-574. Stockholm: International
Federation of Information Processing,
1974.

, “Logic for Problem Solving.” New

York: North-Holland, 1979.

, ‘Algorithm = Logic + Control,”
Communication of the ACM, Vol. 22,
pp. 424431, 1979.

Littman, D. C., “Modeling Human Expertise
in Knowledge Engineering: Some Prelimi-
nary Observations.” In B. R. Gaines and
J. H. Boose (eds.), Knowledge Acquisition
for Knowledge-Based Systems. New York:
Harcourt Brace Jovanovich, 1988.

-104-

o

Logicon, Inc. (G. Silva, D. Dwiggins, and
C. Montgomery), A Knowledge-Based
Automated Message Understanding Meth-
odology for an Advanced Indications
System. RADC-TR-79-133, Rome Air
Development Center AD# A072 395, 1977.

———, Operational Concept Document for
Conceptual Modeling Via Logic Program-
ming, OSD: W-R88-02. Woodland Hills,
Calif.: Logicon, Inc., Operating Systems
Division, January 1989.

————, Interim Technical Report for Concep-
tual Modeling Via Logic Programming.
Woodland Hills, Calif.: Logicon, Inc.,
Operating Systems Division, March
1989a.

, Software Requiremer.ts Specification
for Conceptual Modeling Via Logic
Programming, OSD: W-R88-03. Woodland
Hills, Calif.: Logicon, Inc., Operating
Systems Division, March 1989b.

———, Software Top Level Design Document
for Conceptual Modeling Via Logic
Programming. Marina del Rey, Calif.:
Logicon, Inc., Operating Systems Divi-
sion, March 1989c.

Markusz, “Applicaticn of Prolog in Designing
Many-Storied Dwelling Houses,” Proceed-
ings of Logic Programming Workshop,
pp. 249-260. Debrecen, Hungary, 1980.

Martin, F FE, Computer Modeling and
Simulction. New York: John Wiley and
Sons, 1968.

McCarthy, J., “History of LISR” ACM
SIGPLAN Notices, Vol. 18, No. 8, 1978.
McCarthy, J., and P J Hayes, “Some
Plilosophical Problems from the Stand-
point of Artificial Intelligence.” In
D. Michie and B. Meltzer (eds.), Machine
Intelligence 4. Edinburgh: Edinburgh

University Press, 1969.

McDermott, D., “The Prolog Phenomenon,”
SIGART Newsletter, Vol. 73, pp. 19-20,
1980.

Mellish, C., “An Alternative to Structure-
Sharing in the Implementation of a
Prolog Interpreter,” Proceedings of Logic

Frogramming Workshop, pp. 21-32.
Debrecen, Hungary, 1980.

Minsky, M., “A Framework for Representing
Knowledge.” In P Winston (ed.), The
Psychology of Computer Vision. New York:
McGraw-Hill, 1975.

MProlog Reference Manual. Logicware Inc.,
1986.

Newell, A., and H. Simon, “The Logic Theory
Machine,” IRE Transactions on Informec-
tion Theory, Vol. 2. pp. 61-79, 1956.

, Human Problem Solving. Reading,
Mass.: Addison-Wesley, 1972.

Noah, W. W, and S. Halpin, “Adaptive User
Interfaces for Planning and Decision Aids
in C31 Systems,” IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 16,
No. 6, pp. 909-918, November/December
1986.

Noah, W. W,, and R. Hopf-Weichei, Shared
Conceptual Model Development: Implica-
tions for Communications of a Cognitive
Analysis of Operations, Paper Prepared for
US. Army Research Institute for the
Behavioral and Social Sciences, OSD:
W-N85-06, 1985.

O’Keefe, R. A, Articles 1682, 1704 on Prolog
Bulletin Board, 1989.

Piaget, J., Biology and Knowledge.
Englewood Cliffs, N.J.: Prentice-Hall,
1972.

Prolog Reference Manual. BIM, 1988.

Quillian, M. R., “Semantic Memory.” In
M. Minsky (ed.), Semantic Information
Processing. Cambridge, Mass.: MIT Press,
1968.

Quintus, Quintus ProWINDOWS Manual.
Mountain View, Calif.: Quintus Compute-
Systems, Inc., 1988a.

, ProTALK Programmer’s Guide.
Mountain View, Calif.: Quintus Computer
Systems, Inc., 1988b.

———, Quintus Prolog Reference Manual.
Mountain View, Calif.: Quintus Computer
Systems, Inc., 1988c.

-105-

Roterts, G., An Implementation of Prolog,
M.S. Thesis. Waterloo, Ontario: Univer-
sity of Waterlco, 1977.

Robinson, J., “A Machine-Orieated Logic
Based on the Resolution Principle,”
JACM, Vol. 12, pp. 23-41. 1965.

Sandewall, E., “Conversion of Predicate-
Calculus Axioms, Viewed as Non-
Deterministic Programs,” International
Joint Conference on Artificial Intelligence,
pp. 230-234. Stanford, Calif.,, 1973.

Schank, R. C., and R. P. Abelson, Scripts,
Plans, Goals, and Understanding.
Hillsdale, N.J.: Erlbaum, 1977.

Shaw, N., A Formal System for Specifying and
Verifying Program Performance, Technical
Report. Pittsburgh: Carnegie-Mellon Uni-
versity, 1980.

S.iel, B., “Power Tools for Programmers,”
Datameation, pp. 131-144, February 1983.

Simnori, D. T, and S. H. Starr, “The Mission
Oriented Approach to NATO C2 planning,”
Signal, September 1987.

Simmons, R. S., and J. Slocum, “Generating
English Discourse from Semantic Net-
works,” CACM, Vol. 15, pp. 891-905, 1972,

Steele, G. L., Common LISP: The Language.
Burlington, Mass.: Digital Press, 1984.

Sterling, L., and E. Shapiru, The Art of Prolog:

Advanced Programming Techniques.

Cambridge, Mass.: The MIT Press, 1986.

SunView Applications Programmer’s Guide.
Mountain View, Calif.: Sun Microsystems,
Inc., 1986.

Sweet, R., “An Evolving C2 Evaluation
Tool—-MCES Theory,” Proceedings of
the 9th MIT/ONR Workshop on C3
Systems. Cambridge, Mass.: Laboratory
for Information and Decision Systems,
Massachusetts Institute of Technology,
December 1986.

Thayse, A., From Standard Logic to Logic
Programming. New York: Joha Wilev and
Sons, 1988.

Unix Interface Querview. Mountain View,
Calif.: Sun Microsystems, Inc., 1986.

van Emden, M., “MczDermott on Prolog: A
Rejoinder,” SICART Newsletter, Vol. 73,
pp. 19-20, 1980.

Warren, D. H. D., and F. Pereira, “Prolog—
The Language and Its Implementation
Compared with LISP” SIGPLAN Notices,
Vol. 12, No. 8, August 1977.

Warren, . H. D., “An Improved Prolog
Implementation which Optimizes Tail
Re ursion,” Proceedings of Logic Pro-
gramming Workshop, pp. 1-11. Debrecen,
Hungary, 1980.

, “A Viaw of the Fifth Generation and

Its Impact,” Proceedings of Conference on

Japan and the Fifth Ge .eration. New

York: Pergamon, 1982.

, Foreword to L. Sterling and
E. Shapiro, The Art of Prolog: Advanced
Programming Techniques. Cambridge,
Mass.: The MIT Press, 1986.

Waterman, D. A., A Guide to Expert Systems.
Reading, Mass.: Addison-Wesley, 1985.
Weiss, S. M., and C. A. Kulikcwski, Designing
Expert Systems. Totowz, N.J.. Rowman

and Allanheld, 1984.

Woods, D D., and E. Hollnagel, “Map»ning
Cognitive Demands in Complex Problem-
Solving Worlds.” In B. R. Gaines and
d. H. Boose (eds.), Knowledge Acquisition
for Knowledge-Based Systems. New York:
Harcourt Brace Jovancvich, 1988.

Yourdon, E., Managing the Structured
Techniques. Englewood Cliffs, N.J.
Prentice-Hall, 1979.

Ziles, S. N., “Types, Algebra, and Modeling.”
In M. L Brodie, J. Mylopoulos, and
J. W. Sclimidt (eds), On Conceptual Mod-
eling. New York: Springer-Verlag, 1984.

-106-

_C)l

&

o

APPENDIX A
CMLP INSTANCE DIRECTORY

Class: Characteristicviniiiiiii it ittt ie i 108
Class: Function e 110
Class: Function Group i 113
Class: Goal i 114
Class: Goal Groupot e 121
Class: Rule 122

-107-

1. Class: Characteristic

Instance 'Characteristic’(1)
Element: C2
Name: Degraded Operatuons
Description: Degraded Openauons:
The capability of a2 C2 sysiem w0 sustain losses in C2 and
supporting elements and continue operating at a lower level of
capability.

Instance "Characteristic’(2)
Element: 2
Name: Mobile
Description: Modbility:
The capability of the C2 element or its supporting elements
10 relocate in an effort 0 confuse anacking forces and to
increase survivability.

Instance 'Charactenstc'(3)
Element: C2
Name: NBC Hardened
Description: NBC Hardened:
The capability of C2 and supporing elements to withsiand
the effects of Nuclear, Biclogical and Chemical attacks through
passive measures and continue operating.

Instance 'Charactenistic’(4)
Element: C2
Name: Physical Secunity
Description: Physical Security:
The property of Q2 and supporting clements to have secu-
rity measures in place 1o prevent snd counter sabotage and ter-
rorist agacks.

Instance 'Chanscteristic'(5)
Element: C2
Name: Survivable Communications
Description: Survivable Communications:
The capability of the C2 and supporting elements o main-
ain communicaton through periods of attack and continue
opersting.

Instance 'Characieristic’(6)
Element: Q2
Name: Back-up Capability
Description: Back-up Capability:
The property of a defensive system to have redundant ele-
ments such that as elements are lost other elements assume pro-
cessing responsibility.

{nstance ‘Chanacterisuc’ ()
Element: C2
Name: Secure Communications
Description: Secure Communications:
The property of the C2 elements o maintain communication
systems that are not jammable by counter measures nor able o
be intercepted by enemy forces.

Instance 'Characternistic'(8)
Element: C2
Name: Secure Data Processing
Description: Secure Dau Processing:
The property of the sysiem and the data processing equip-
ment to prevent unauthorized access to the dau and operations
of the system.

Instance ‘Chanctenstic’(9)

Element: Sensors
Name: Number
Description: Sensor Number:
The number of sensors which interface 10 the C2 system
md therefore require data processing by the C2 system

Instance 'Characteristic’(10)
Element: Sensors
Name: Location
Description: Sensor Location:
The location of the sensors with respect o the proximity 1o
the boundary of the defended ares or to the expected threat

Instance ‘Charactenisuc'(11)
Element: Sensors
Name: Type
Description: Sensor Type:

The type of sensor refzrs to the band of the electro- mag-
netic spectrum in which it operates, for example infrared, radar
or laser radar or an individual band designation such as L-band
or S-band for mdar.

Instance ‘Chanacterisuc'(12)
Element: Sensors
Name: Coverage Volume
Description: Sensor Coverage Volume:
The volume through-out which the sensor has the capabulity
to detect a target of a specified size or charactensuc.

Instance ‘Chanactenisuc’(13)
Element: Sensors
Name: Sensitivity
Description: Sensor Sensiuvicy:
The ability of the sensor to detect the minimum target at the
maximum range. :

Instance 'Chanacteristic’(14)
Element: Sensors
Name: Resolution
Description: Sensor Resolution: '

The capability of the sensor to distinguish between indivi-
dual objects oriented such that they have the minimum sepana-
tdon distance between them or the ability to discnminate
between decoys and true objects.

Instance "Chancterisnc’(15)
Element: Sensors
Name: Survivability
Description: Sensor Survivability:
The ability of the sensor to protect itself from threat objects
whose mission is (0 neutralize the sensor.

Instance "Characteristic '(16)
Element: Sensors
Name: Capacity
Description: Sensor Capacity:
The maximum number of objects the sensor is capable of
reporting simultaneously.

Instance ‘Chanactenistc’(17)
Element: Sensors
Name: Scan Rate
Description: Sensor Scan Rate:
The rate at which the sensor sweeps through its entire cov-
erage volume.

Instance 'Chanaensuc'(18)

-108-

—

Element: Weapons
Name: Number
Description: Weapon Number:
The number of weapons which interface 10 the C2 system
and therefore require data processing by the C2 system

[nstance "Characterisuc’(19)
Element: Weapons
Name: Location
Description: Weapon Location:
The location of the weapons with respect o the proximity to
the boundary of the defended area or 0 the expected threat

Instance 'Chancteristic’(20)
Element: Weapons
Name: Type
Description: Weapon Type:

The weapon type refers 10 the type of fusing (proximity,
contact), the type of warhead (conventional, nuclear), or the
type of sensor the weapon uses to home in on its target (radar,
infrared).

Instance "Characteristic’(21)
Element: Weapons
Name: Effective Volume
Description: Weapon Effective Volume:
The volume of space in which the weapon has the design
probability of kill against a specified target

Instance 'Characienstic’(22)
Element: Weapons
Name: Sensitivity
Description: Weapon Sensitivity:

The capability of the weapon's sensor to mainwin lock-on -

10 its intended larget in a countermeasures environment.

Instance 'Charnacteristc’(23)
Elément: Weapons
Name: Probability of Kill
Description: Weapon Probability of Kill:
The design probability of kill of the weapon against a
specific target

Instance 'Characteristic’(24)
Element: Weapons
Name: Speed
Description: Weapon Maximum Acceleration/Speed:
The maximum acceleration/speed of the weapon based on
its designed performance characteristics.

Instance "Characternistic’(25)
Element: Weapons
Name: Fining Rate
Description: Weapon Firing Rate:
The maximum rate at which the weapon can reload or
refire.

Instance 'Characterisic'(26)
Element: Threats
Name: Number
Description: Threat Number:
The number of threats which the enemy has in inventory
and are expected to be brought to bear against friendly forces.

Instance "Characteristic'(27)
Element: Threats
Name: Locauon (Primary basing)
Description: Threat Locauon:
The locauon of the threats with respect 1o the proximity to

the boundary of the defended area.

Instance 'Chanscierisuc’(28)
Element: Threats
Name: Spatial Density
Description: Threat Spatial Density:
The proximity of threats to each other typicslly resulting in
the inability of the sensor system to determine the actual
number of auacking objects.

Instance 'Chanceristic’(29)
Element: Threats
Name: Speed
Description: Threat Maximum Acceleration/Speed:
The maximumn acceleration/speed of the threat based on
received intelligence data.

Instance 'Chanactensuc'(30)
Element: Threats
Name: Detectability
Description: Threat Detectability:
The charmacteristics of the threat which determine its sensor
signature.

Instance 'Chanaensuc’(31)
Element: Threats
Name: Maneuverability
Description: Threat Maneuverability:
The ability of the threat 10 maneuver within its performance
envelope, usually expressed in terms of g forces.

Instance "Characteristic’(32)
Element: Threats
Name: Weapon Avoidance
Description: Threat Weapon Avoidance:
The capsbility of the threat to usc countermeasures or
maneuverability 10 evade weapons.

Instance 'Chanacteristic’(33)
Element: Threats
Name: Identifiability
Description: Threat Identifiability:
The characteristics of the threat that permit the sensor sys-
tem to disanguish it from other objects.

-109-

—

2. Class: Function

Instance "Funcuon'(1}
Function Group: Sensor Control
Name: Blanking Conirol
Description: Blanking Control:
The ability to determine arcas of high false target reports
from individual sensors and reject dawa in those areas by sensor
type.

Instance 'Function’(2)
Function Group: Sensor Control
Name: Radistion Mansgement
Description: Radiation Management:

The ability 10 control sensors radiating in a specific area at 8
given tme, with respect 10 other sensors such that the same
sensor is not radiating in the same sector every scan. The
object of this function is to provide sensor coverage over the
enure defensive ares while confusing the enemy and increasing
sensor survivability by randomiy altering sensor areas of radia-
tion.

Instance ‘Function’(3)
Function Group: Sensor Control
Name: ECCM Control
Description: ECCM Control:
The ability to select specific capsbiliies of individual sen-
sors to provide improved threat visibility in a high ECM
environment

Instance "Function’(4)
Function Group: Sensor Control
Name: Sensor Tasking
Description: Sensor Tasking:
The ability to direct sensors 10 scan specific sectors to pro-
vide higher probabilities of detecion on presumed threat comi-
dors. .

Instance 'Function'(5)
Function Group: Tracking
Name: Sensor Data Acceptance
Description: Sensor Data Acceptance:
The process by which sensor dau is received, tested for
transmission errors, time agged and placed in the appropriate
buffer for further processing.

Instance "Functicn’(6)
Function Group: Tracking
Name: Coordinate Transformation
Description: Coordinate Transformation:
The process which translazes urget repons received from
the sensors from the sensor coordinsie plane 10 a common
coordinate plane.

lastance 'Function'(7)
Function Group: Tracking
Name: Registration
Description: Registration;
The process which applies an algorithm o the received sen-
sor data to determine positional errors, due to translation errors
and viewing angle, and correct the errors.

Instance ‘'Function’(8)
Function Group: Tracking
Name: Fusion/Correlation
Description: Fusion/Corveiation:
The process by which reporus from multipie sensors on the
same target sre determined 10 be the same target and are then

~110-

;—

associsted with an existing system track or cause the inituation
of a system track.

Instance ‘Functon’(9)

Function Group: Tracking
Name: Track Update
Description: Track Update:

The process by which a sysiem track is updated in terms of
position, velocity and heading based on data received from the
sysiems sensors and correlated with the track.

Instance 'Function'(10)

Function Group: Tracking
Name: Ambiguity Resolution
Description: Ambiguity Resolution:

The process which resolves which sensor reporns are associ-
sled with tracks when the correlation process cannot con-
clusively determine the which tracks the reports should be
correlated with. This situation occurs when tracks with surular
headings cross or intersect each others path. Another sitation
which results in an inability 0 correlate data 1o tracks occurs
when targets are flying in formation and sensors are able to
detect more than one target

Instance 'Function'(11)

Function Group: Tracking
Name: Track Initiaton
Description: Track Inicadon:

The process by which uncorrelated data is analyzed through
multiple sensor scans to determine if 2 new track should be
created or the repons are false alarms.

Instance 'Functon’(12)

Function Group: Tracking
Name: Kill Assessment
Description: Kill Assessment:

The process by which the system determines if a weapon
intercepted its target based on loss of sensor data from the war-
get

Instance 'Function'(13)

Function Group: Threat Evaluation
Name: Raid Composition
Description: Raid Composition:

The process by which the type of threat which comprise the
raid are determined through analysis of sensor data and intelli-
gence information.

Instance "Function®(14)

Function Group: Threat Evaluation
Name: Flight Characteristics
Description: Flight Characteristic Analysis:

The process which attempts to associate potental flight
paths of threats with objects tracked by the sysiem based on
expected routes of attack.

Instance "Function'(15)

Function Group: Threat Evajuation
Name: Suength
Description: Raid Strength:

The process which determines the actual number of threat
objects based on fusion and correlation of sensor data and
intelligence information. The number of objects can be deter-
mined sccurstely based on the fact that, at most each objext
should only yield one report per sensor.

Instance 'Function’(16)

Function Group: Threat Evaluauon
Name: Prionity Ranking

Description: Priority Ranking:

The process which determines which objects are the most

threatening and should therefore be intercepted first.
¥
Instance 'Funcuon'(17)
Function Group: Threat Evaluation
Name: Enemy Order of Baule Maintenance
Description: Enemy Order of Baule Maintenance:

The process which attempts to determine the number and
type of enemy resources remaining lin inventory based on intel-
ligence information and knowledge of the threat objects
detected and killed.

Instance "Function’(18)
Function Group: Threat Assessment/Identification
Name: Flight Route Correlation
Description: Flight Route Correlation:
The process which associates tracks with previously stored
flight pian information to determine the identity or classification
of the object.

Instance 'Function’(19)
Function Group: Threat Assessment/Identificaion
Name: Route Deviauon Alen
Description: Route Deviation Alert:
The process which monitors tracks on a known flight path
and provides a waming indication should the track deviate from
the flight path.

Instance 'Funcuon'(20)
Function Group: Threat Assessment/Identification
Name: IFF/SIF Processing
Description: [FF/SIF Processing:
The process which correlates IFF/SIF daua with specific
tracks for positive identification purposes.

Instance 'Function®(21)
Function Group: Threat Assessment/Identification
Name: Geographic Determination
Description: Geographic Determination:
The process which assigns an identity 10 a track based on
its geographic area of initial detection or flight route through a
designated area.

Instance 'Function'(22)
Function Group: Threat Assessment/Identification
Name: Challenge Processsing
Description: Challenge Processing:
The process which attempts to identify unknown tracks by
requesting transmission of a code and receiving the appropriate
coded reply.

Instance 'Function’(23)
Function Group: Threat Assessment/Identification
Name: Discnimination
Description: Discrimination Analysis:
The process which wtilizes target signature data from the
sensors and compares the data with stored information to
attempt to determine the exact type of target.

Instance ‘Functon'(24)
Function Group: Weapon Assignment
Name: Weapon Status
Description: Weapon Status Maintenance:
The process which checks and mainuins database compris-
ing the operational and ready status of the weapons.

Instance 'Function’(25)
Furction Group: Weapon Assignment

Name: Weapon Probability of Kill
Description: Weapon Probability of Kill:

The process which sitempts to determine the weapon that
has the highest probability of kill against a specific target

Instance 'Function'(26)
Function Group: Weapon Assignment
Name: Weapon Intercept Time
Description: Weapon Intercept Processing:

The process which stiempts to determine the time and loca-
tion at the point where the weapon will intercept the threat and
the relative position of the threat with respect to the defensive
perimeter.

Instance ‘Function'(27)
Function Group: Weapon Assignment
Name: Weapon-Target Assignment
Description: Weapon Target Assignment:
The process which determines the weapons that should be
commitied against a particular threat based on prionty ranking,
wezpon probability of kill, and weapon intercept time.

Instance 'Function’(28)
Function Group: Weapon Control
Name: Weapon Soluton Generation
Description: Intercept Solution Generation:
The process which computes and recomputes the weapon
intercept paths to update the weapons to provide the best inter-
cept path within weapon performance limits.

Instance 'Function’(29)
Function Group: Weapon Control
Name: Weapon Guidance
Description: Interceptor Guidance:

The process which provides detailed flight route informa-
tion, inciuding aititude, heading, speed and course updates,
through pre-defined tactics, 1o guide an interceptor o the point
where it will intercept its target.

Instance 'Function'(30)
Function Group: Weapon Control
Name: Target Update Processing
Description: Target Update Processing:
The process which updates the threat location and predicts
the futre location so that appropriate direction can be given to
the weapons.

Instance "Function®(31)
Function Group: Weapon Control
Name: Weapon Effectiveness
Description: Weapon Effectiveness:

The process which mainuains the score of weapons that suc-
cessfully intercepted their intended targets and the total
weapons committed against targets. Additonally, monitors the
missions for shoot-look-shoot mission planning.

Instance 'Function®(32)
Function Group: Telling
Name: Daua Receipt
Description: Data Receipt:
The process which accepts data from supporting and super-
ordinate nodes, verifies the message integnity and routes the
message to the addressee.

Instance 'Function'(33)
Function Group: Telling
Name: Position Translauon
Description: Position Translation:
The process which performs the translauon from the

-111-

coordinate plane of the reporting node o the local coordinate
plane based on the Data Link Reference Posinon(DLRP).

instance 'Function’(34)
Function Group: Telling
Name: Data Transmission

Function Group: Executive (OS)
Name: Recording
Description: Sysiem Recording:
The process which records selected live or simulated dau
for offline processing, training and procedure review.

Description: Data Transmission: Instance 'Function'(43)

The process which collects system dats from all system
functions and routes it for trnnsmission o the supporting nodes.

Instance ‘Function'(35)
Function Group: Telling
Name: Input/Output Filtering (GEO,TYPEID)
Description: Input/Output Filtering:

Function Group: Executive (OS)
Name: Simalation
Description: Systemn Simulaton:

The process which provides the capability to simulate sys-
tem inputs for the purpose of syswem test, exercise, and train-
ing.)

The process which selects the dats 10 be transmitted or Instance 'Function’(44)

received based on geography, type or identification.

Instance ‘Function’(36)
Fuaction Group: Telling
Name: Reporting Responsibility
Description: Reponing Responsibility:
The process which determines which of the nodes reporting

Function Group: Executive (OS)
Name: Openutor Input Processing
Description: Operator Input Processing:

The process which responds 1o operator requests for infor-
mation for mny item in the sysiem or any action taken by the
system.

a track has the ultimate responsibility for the tracks informa- Instance 'Function'(45)

tion. Usually based on track dawu quality and is arbitrated on
an individual link basis for those nodes detecting the track.

Instance 'Function’'(37)
Function Group: Teiling
Name: Link Status Reporting
Description: Link Staws Monitoring:

The process which mainuins a message count for each link
and repons total messages, messages received in error, mes-
sages re-tansmitted, cwrrent availability of the link and the
messages per transmission frame.

Instance "Function'(38)
Fuaction Group: Telling
Name: Alerts/Waming Info
Description: Alerts/Waming Information:
The process which transmits alert/waming data to other
nodes upon detection of hostile sctivity or imminent attack.

Instance "Function'(39)
Function Group: Telling
Name: Authority Control Arbitration
Description: Authority Contral Arbitration:
The process which determines which nodes are subordinate
or super-ordinate as nodes are lost to hostile forces.

Instance "Function'(40)
Function Group: Executive (OS)
Name: Real Time Control
Description: Real Time Control:

The process which monitors the amount of data the system
is processing, provides alens as system capacity is spproached,
expands and contracts the frame, as necessary, or drops excess
data as it i received W prevent caasuophic system failures.

Instance "Function'(41)

Function Group: Executive (OS)
Name: System Monitoring/Recovery
Deacription: Sysiem Monitoring/Recovery:

The process which stamses system hsrdwsre and software
10 ensure sysiem integrity, and performs required actions 1o re-
sllocate and reconfigure the system o maintain processing
capability and provide alerts to the operator in the event of a
malfunction.

Instance 'Function’'(42)

-112-

Function Group: Executive (OS)
Name: Display Generaton
Description: Display Generation:
The process which formats data for display to the operators
and routes the dawa to the appropriate display devices.

3. Class: Function Group

Instance "Function Group'(1)
Name: Sensor Control
Description: Sensor Control Function Group:

The Sensor Control Function Group contains the functions
which the C2 system performs to maintain complete sensor
coverage over the entire protected region and its approaches
and prevents hostile forces from deceiving the sensor systems.
Function: [Blanking Control,Radistion Management,ECCM
Control,Sensor Tasking]

Instance *Function Group'(2)
Name: Tracking
Description: Tracking Function Group:

The Tracking Function Group contains the functions that are
responsible for receiving and processing raw sensor data for
presentation to the operator and for use by other system func-
uons.

Function: {Sensor Data Accepance,Coordinate
Transformation Registration, Fusion/Correlaton, Track
Update Ambiguity Resolution,Track Initiation Kill Assessment]

Instance 'Function Group'(3)
Name: Threat Evaluation
Description: Threat Evaluation Function Group:

The Threat Evaluation Function Group contains the func-
tions that attempt 1o determine the level of threat represented
by objects detecied and tracked by the system.

Function: [Raid Composition,Flight
Characteristics, Strength, Priority Ranking,Enemy Order of Bautle
Maintenance]

Instance *Function Group'(4)
Name: Threat Assessment/Identification .
Description: Threat Assessment and Identificaion Function
Group: . -
The Threat Assessment and Identification Function Group
contains the functions which are responsible for determining
the identity of an object and assessing the threat imposed by
the object.
Function: [Flight Route CorrelationRoute Deviaton
Alert IFF/SIF Processing,Geographic Determination,Challenge
Processsing, Discrimination}

Insiance 'Functon Group'(S)
Name: Weapon Assignment
Description: Weapon Assignment Function Group:

The Weapon Assignment Function Group contains the func-
tions responsible for the “pairing” of specific weapon to its
intended target
Function: [Weapon Status,Weapon Probability of Kill, Weapon
Intercept Time,Weapon-Target Assignment)

Instance 'Function Group'(6)
Name: Weapon Control
Description: Weapon Control Function Group:

The Weapon Control Function Group contains the functions
responsible for computing the guidance information necessary
for the weapon to reach its intended target
Function: [Weapon Solution Generation,Weapon
Guidance, Target Update Processing, Weapon Effectiveness)

Instance ‘Function Group'(7)
Name: Telling
Description: Telling Function Group:
The Telling Function Group contains the funcuons responsi-
bie for maintain data communications between the C2 system

and its supporting elements.

Function: [Daua Receipt,Position Translatuon,Dats
Transmission Input/Output Filtering (GEO,TYPE,ID),Reporting
Responsibility Link Stats Reporting, Alerns/Waming
Info,Authority Control Arbitration]

Instance 'Function Group'(8)
Name: Executive (OS)
Description: Executive Functions Group:

The Execwive Functions Group contains the functions
responsible for the basic system operations including hardware
and software error detection.

Function: [Real Time Control,System
Monitoring/Recovery,Recording, Simulation Operator Input
Processing Display Generaton]

Instance 'Function Group'(l)
Name: Sensor Control
Description: Description
Function: [Blanking Control,Radiation Management, ECCM
Control,Sensor Tasking]

Instance ‘Function Group'(2)
Name: Tracking
Description: Description
Function: [Sensor Dau Accepance,Coordinate
Transformation Registration,Fusion/Correlation, Track
Update, Ambiguity Resolution,Track Initation Kill Assessment]

Instance 'Function Group'(3)
Name: Threat Evaluation
Description: Description
Function: {Raid Composition,Flight
Characteristics,Strength, Priority Ranking,Enemy Order of Baule
Maintenance)

Instance 'Function Group'(4)
Name: Threat Assessment/Identfication
Description: Description
Function: {Flight Route CorrelationRoute Deviation
Alent IFF/SIF Processing Geographic Determination,Challenge
Processsing,Discrimination]

Instance 'Function Group'(5)
Name: Weapon Assignment
Description: Description
Function: [Weapon Status,Weapon Probability of Kill Weapon
Intercept Time, Weapon-Target Assignment)

Instance ‘Function Group'(6)
Name: Weapon Control
Description: Description
Function: [Weapon Solution Generation, Weapon
Guidance, Target Update Processing, Weapon Effectiveness]

Instance 'Function Group’(7)
Name: Telling
Description: Description
Function: {Data Receipt,Position Translation,Data
Transmission Input/Output Filtering (GEO,TYPE,ID).Reporung
Responsibility,Link Status Reporting, Alerts/Waming
Info,Authority Control Arbitration]

Instance ‘Function Group'(8)
Name: Executive (OS)
Description: Description
Function: (Real Time Control,System
Monitoring/Recovery, Recording, Simulation,Operator Input
Processing,Display Generation}

~-113-

«. Class: Goal

Instance "Goal'(1)
Name: Maximum Case Attack
Description: The C2 Sysiem should be capable of accommo-
dating the maximurmn case aitack.
Goal Group: System Robusmess
Satisfactory: SATISFACTORY - The C2 System can accom-
modate the maximum expected simuitaneous attack when in
conformance with all expected scenarios.
Partiaily Satisfactory: PARTIALLY SATISFACTORY - The
C2 System can accommodate the maximum atack only if the
threat is disbursed and uses multiple attack cormidors. The C2
Sysiem may be designed 1o operate in 3 degraded mode when
faced with maximum threat in corridors.
Unsatisfactory: UNSATISFACTORY - The C2 Sysiem will
sawrate when the maximum threat attack occurs.
Not Supported: NOT SUPPORTED - This goal is not sup-
poried when the sensor sysiems camnot detect all of the anack
or the communication systemn cannot report all of the attack
This rating may be present with other ratings indicating what
the C2 System would do if the remainder of the system could
support the maximum case attack.

Not Applicable: NOT APPLICABLE - 'nus goal is expected

10 apply to all C2 Systems.
Applicable Functions: None
Affects Swat: No

Affects Capacity: Yes
Affects Geography: No
Additional Remarks:

Instance 'Goal’(2)
Name: Processing for all Regions .
Description: The C2 Systemn should provide processing caps-
bility 10 accommodate all geographic areas.
Goal Group: Sysiem Robustness v -
Satisfactory: SATISFACTORY - The C2 System can with-
stand the maximum auack in any geographic area without
satursion but may require degraded performance.
Partially Satisfactory: PARTIALLY SATISFACTORY - The
system may sswrale in one or more geographic aress when
subjecied 10 the maximum attack or there are areas in which
there is no command and control support, but the system is
expected to operate within goals.
Unsatisfactory: UNSATISFACTORY - The sysiem cannot
meet the threat environment in expected areas of attack.
Not Supported: NOT SUPPORTED - This goal is not sup-
ported when the sensor (or communicatons) systems do not
provide the capability necessary to detect and report the threat
in any of the geographic areas. This rating may occur with one
of the ratings above which is interpreted as to how the Q2
would behave if the capability was supponed by other cle-
ments.
Not Applicable: NOT APPLICABLE - This rule is not appli-
cable when System is not broken down inlo geographic
regions.
Applicable Functions: {Sensor Tasking]
Affects Swat: No
Affects Capacity: Yes
Affects Geography: Yes
Additional Remarks:

Instance "Goal*(3)
Name: Conserve Defensive Resources
Description: The system should conserve defensive resources
for protection in future acacks based upon current atack
strengths, enemy tnventones, and assets being defended.
Goal Group: Sysiem Robusiness

Satistactory: SATISFACTORY - The system provides for
sutomatic or manual aids 10 analyze the current attack, enemy
inventories and status of the defended assets 10 determine the
level of engagement of the current attack.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
system provides sufficient information to man so that he may
perform an informed, but unassisied, decision on the extent of
the defense information on enemy inventories of threat so that
the system cannot make a informed decision on the level of
defense.

Unsatisfactory: UNSATISFACTORY - The sysiem expends
resources at will, or provides conditions under which man is
likely w0 expend resources at will, even when that is not in the
best interest in meeting the goals of the defensive system.

Not Supported: NOT SUPPORTED - There is insufficient
sttack information, status of defended assets, or information on
enemy inventories of threat such that the sysiem cannot make
an informed decision on the level of defense.

Not Applicable: NOT APPLICABLE - The defensive system
has been designed to use its maximum capability for any
attack.

Applicable Functions: [Raid Composituon,Strength Priority
Ranking,Enemy Order of Baule Maintenance, Weapon Probabil-
ity of Kill]

Affects Swat: Yes

Affects Capacity: No

Affects Geography: No

Additionsi Remarks:

Instance 'Goal’'(4)

Name: Expend Resources Proporionally

Description: The C2 System shall expend defensive resources
proportional to the value of assets under attack.

Goal Group: System Robusmess

Satisfactory: SATISFACTORY - The system provides for
automatic or manual aids to analyze the assets under atack w©
determine appropriate level of engagement.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
sysiem provides sufficient information to man so that he may
perform an informed, but unassisted, decision on the extent of
the defense

Unsatisfactory: UNSATISFACTORY - The system expends
resources at will, or provides conditions under which man is
likely 10 expend resources at will, even when that is not in the
best interest in meeting the goals of the defensive system.

Not Supported: NOT SUPPORTED - There is insufficient
attack information, so that the sysiem cannot make a informed
decision on the level of defense.

Not Applicable: NOT APPLICABLE - This system does not
have the capability to idemify the assets being threatened and
must perform a subtractive defense.

Applicable Functions: None

Affects Swat: No

Affects Capacity: No

Affects Geography: No

Additional Remarks:

Instance "Goal'(5)

-114-

Name: Use all Data Received

Description: The C2 Sysiem should utilize all received surveil-
lance data to the greatest extent possible.

Goal Group: Surveillance Dau Use

Satisfactory: SATISFACTORY - The C2 System will accep
and analyze all received surveillance daw in sufficient quant-
tes to have appropriate information for all missions.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 System uses sufficient daua to perform primary missions
with some confidence.

Unsatisfactory: UNSATISFACTORY - The C2 System fails

10 use data and makes uniformed decsions at times.

Not Supported: NOT SUPPORTED - Sensors (or communics-
tions) do not provide all data or information from data.

Not Applicable: NOT APPLICABLE - There is no need for
using more sensor data than currently being used.

Applicable Functions: [Fusion/Correlation, Track
Update Ambiguity Resolution, Track Inidation Kill
Assessment, Strength Flight Route Correlation Route Deviation
Alen [FF/SIF Processing, Geographic
Determination, Discrimination)

Affects Swat: No

Affects Capacity: No

Affects Geography: No

Additional Remarks:

Instance 'Goal’(6)
Name: Not Rely on Deniable Data
Description: The C2 System shall not rely upon the use of
deniabie intelligence data for any processing, but shall provide
the capability 10 use the data 10 the best advantage upon
receipt.
Goal Group: Surveillance Data Use
Satisfactory: SATISFACTORY - The C2 System accepts
intelligence data and formulates this data into order of batie
informaton that is used for threat assessment.

Additional Remarks:

Instance *Goal’(8)

Partially Satisfactory: PARTIALLY SATISFACTORY - The -

C2 System allows the command and control operator to input
rules of engagement based upon manual interpretation of intel-
ligence data.

Unsatisfactory: UNSATISFACTORY - This system makes no
use of intelligence data following establishment of alert status,
or the system depends upon intelligence data that is deniable by
the enemy.

Not Supported: NOT SUPPORTED - The intelligence system
does not provide usable data. .

Not Applicable: NOT APPLICABLE - No intelligence data
exists that can be made available .

Applicable Functions: None

Affects Swat: No

Affects Capadcity: No

Affects Geography: No

Additional Remarks:

Instance 'Goal'(7)
Name: Correlate & Fuse Data
Description: The C2 System shall correlate and fuse data 10
obtain estimates of mid counts and attack charscter.
Goal Group: Surveillance Data Use
Satisfactory: SATISFACTORY - C2 System provides capabil-
ity to use any threat data that is available and provides raid size
counting and analysis.
Partially Satisfactory: PARTIALLY SATISFACTORY - The
Q2 System provides a capability 1o estimate overall raid counts
without any to use all data to determine the nature of the
attack.
Unsatisfactory: UNSATISFACTORY - The C2 System
responds o detected targets individually without atempting to
analyze the nawre of the auack.
Not Supported: NOT SUPPORTED - The sensors (or com-
munications) do not provide enough data 1o do any significant
threat assessment.
Not Applicable: NOT APPLICABLE - There is no need for
the C2 Sysiem to analyze overall anack carriers as all assign-
ments should be made on an individual threat basis.
Applicable Functions: [Fusion/Correlation Raid
Composition Priority Ranking,Target Update Processing)
Affects Swat: No
Affects Capadty: No
Affects Geography: No

Name: Support Engagements

Description: The C2 System shall fuse (not merge) sensor data
to obtain the best possible identification and position estimates
to support engagement

Goal Group: Surveillance Data Use

Satisfactory: SATISFACTORY - The C2 System performs
positve correlation and fuses multi-sensor data.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 System fuses data when there are single correlation errors
but does not include complex correlated algorithms to select the
best sensor data to perform a more accurate correlation.
Unsatisfactory: UNSATISFACTORY - Dawa from single sen-
sor is used at different times of flight.

Not Supported: Not SATISFACTORY - Sensors (or commun-
icstions) do not provide sufficient dawa for multi-sensor com-
munications

Not Applicable: NOT APPLICABLE - For the C2 System,
single sensor data exceeds accuracy requirements.

Applicable Functions: {Fusion/Correlation]

Affects Swat: No

Affects Capadity: No

Affects Geography: No

Additional Remarks:

Instance "Goal’(9)

Name: Contro} Resources

Description: The C2 System shall utlize surveillance daa to
track and control defense sysiem resources and monitor compli-
ance with direction.

Goal Group: Surveillance Data Use

Satisfactory: SATISFACTORY - Will accept and analyze sur-
veillance data in sufficient time 10 take any available appropri-
ate sction for all engagements.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 System will accept and analyze surveillance data when
available, will support only some of the altemative actions, or
will support only some of the engagements.

Unsatisfactory: UNSATISFACTORY - Fails to use available
action in more than 25% of unsuccessful engagements.

Not Supported: NOT SUPPORTED - Sensors (or communica-
tions) do not provide needed data.

Not Applicable: NOT APPLICABLE - Therc are no misses
caused by lack of control and/or there are not alternative
actions in this system.

Applicable Functions: [Track Update]

Affects Swat: No

Affects Capadty: No

Affects Geography: No

Additional Remarks:

Instance "Goal’(10)

~115-

Name: Confirm/Verify Engagement Results

Description: The C2 System should utilize surveillance dau 10
confirm/verify engagement results.

Gosl Group: Surveillance Daua Use

Satisfactory: SATISFACTORY - The sysiem provides the
capability 0 perform automatic kill assessment by infusing
wespon feedback with surveillance data.

Partiaily Satisfactory: PARTIALLY SATISFACTORY - The
system provides the capability to accept weapon feedback with
sarveillance data and allows the operator 10 use this data for
kill assessment.

Unsatisfactory: UNSATISFACTORY - The system does not
use surveillance data from kill assessment.

Not Supported: NOT SUPPORTED by System - The sensors
(or communications) do not provide data that is usable w

support kill assessment.

Not Applicable: NOT APPLICABLE - The system does not
have time 10 utilize kill assessment data.

Applicable Functions: {Kill Assessment]

Affects Swat: No

Affects Capadity: No

Affects Geography: No

Additional Remarks:

{nstance "Goal'(11)

Name: Consider Assets and Risk

Description: The C2 System shall consider the value of assets
a nsk, degree of risk, probability of defensive actions success,
and the nsk 10 astets that may resuit from defensive actions.
Goal Group: Sysiem Response Selection

Satisfactory: SATISFACTORY - The system includes threat
evaluation and priority ranking and utilizes weapon threat-
engagement probabilities 1o select a defensive action.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
system utilizes limited informaton and rules of thumbd for
assigning weapons 10 specific threats or makes unsupponed
assumptions in the nature of the threat type for performing
assignment.

Unsatisfactory: UNSATISFACTORY - The system responds
10 the sxisicnee of a threat to assign arbitrary weapons without
considening the probability of engagement success and need for
engagement.

Not Supported: NOT SUPPORTED - The sensors (or com-
murucations) do not provide threat assessment information or
there is no data available on the performance of our weapons
on the enemies threat.

Not Applicable: NOT APPLICABLE - There is only one kind
of threat and one kind of weapon (or all threat/weapon engage-
ments areequally likely) and all targets should be engaged.
Applicable Functions: {Raid Composition Strength Priority
Ranking,Wespon Probability of Kill, Weapon-Target Assign-
ment} .

Affects Swat: Yes

Affects Capacity: No

Affects Geography: No

Additional Remarks:

Instance 'Goal'(12)

Name: Optimize Time to Intercept .

Description: The C2 should atempt 10 optimize the time to
intercept (0 achieve the most efficient weapon usage for the
vaiue of assets at risk.

Goal Group: Sysiem Response Selection

Satisfactory: SATISFACTORY - The C2 System provide the
capability to identify threat parameters and assigns weapons for
optimal engagement (or 10 allow shoot-look-shoot capabilities
as is appropriate).

Partially Satisfactory: PARTIALLY SATISFACTORY - The
sysiem provides the capability to perform weapon assignment
but does not provide the weapon with sufficient information to
opurnize the engagement

Unsatisfactory: UNSATISFACTORY - The system assigns
wespons o rgets but does not provide dau or control to
achieve the highest possible engagement result.

Not Supported: NOT SUPPORTED - The sensors (or com-
munications) do not provide sufficient threat data to allow
opumizaton of engagements.

Not Applicable: NOT APPLICABLE - In this defensive sys-
lem there is no reason to opumize engagements as all engage-
ments are equally likely and shoot-look-shoot is not desirable.
Applicable Functions: (Weapon Probability of Kill. Weapon
Intercept Time, Weapon-Target Assignment|

Affects Swat: Yes

Affects Capadity: No

Affects Geography: No
Additional Remarks:

Instance 'Goal'(13)

Name: Multple Weapons Commiuments

Description: The C2 Sysiem shall be capable of supporing
shoot-look-shoot and shoot-fail-shoot weapon commiunents
against s single target to ensure effectiveness.

Goal Group: Sysiem Response Selection

Satisfactory: SATISFACTORY - The system will analyzc dawa
and determine the desirability o take early engagements to
allow suffictent time for shoot- look-shoot and shook-fail-shoot.
The system will provide sufficient kill assessment and weapon
control to exercise shoot-look-shoot or shoot- fail-shoot.
Partially Satisfactory: PARTIALLY SATISFACTORY - The
system will take best first shot engagements and will shoot-
look- shoot and shoot-fail-shoot if there is sufficient ume.
Unsatisfactory: UNSATISFACTORY - The system does not
support shoot-look-shoot and shoot-fail-shoot type decisions
cither because it is not structured to consider early engagements
or because it doesn’t have the capability 10 perform kill assess-
ment and weapon assignment

Not Supported: NOT SUPPORTED - The sensors (or com-
munications) do not provide sufficiendy early informauon 10
allow shoot-look-shoot, or shoot-fail-shoot or do not provide
kill assessment allowing aliemative weapons 10 be assigned, or
this system has insufficient weapons 10 support shoot-look-
shoot or shoot-fail-shoot.

Not Applicable: NOT APPLICABLE - The engagement
sequence for this defensive system does not allow sufficient
tume for shoot-look-shoot and shoot-fail -shoot

Applicable Functions: [Weapon SuwusWeapon Intercep
Time, Weapon-Target Assignment)

Affects Swat: No

Affects Capadity: No

Affects Geography: No

Additional Remarks:

Instance 'Goal’(14)

-116-

Name: Environmental & Geometric Conditions

Description: The C2 System shall consider known doctrinal
employment, intelligence, environmental and geometric condi-
tons to select 2 weapon that has the highest probability of suc-
cess in engagement approach.

Goal Group: System Response Selection

Satisfactory: SATISFACTORY - The Q2 System provides
automatic (or assistance 10 operator) analysis of engagemem
geometries (o allow selection of the highest probability engage-
ment sequence.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 System considers the most important factors leading to
engagement success but ignores functions such as sun angle
that may lead w0 infrequent nonoptimized engagement
Unsatistactory: UNSATISFACTORY - The system does not
snalyze available data in order to select high probability
engagements and sufficient information is not provided w0 the
wespons sysiem 10 support engagement planning.

Not Supported: NOT SUPPORTED - The sensors (or com-
munications) do not provide sufficient information to aliow the
C2 or wespon systems to select higher probability engage-
ments.

Not Applicadble: NOT APPLICABLE - The engagement
sequence is not subject to doctrinal employment, environmen-
tal, or geometric conditions to determine its success.

Applicable Functions: None

Affects Swat: No

Affeas Capadty: No

Affects Geography: No

Additional Remarks:

Instance ‘Goal'(15)

Name: Give Updates 10 Weapons

Description: The C2 System shall provide weapons with
updates of threat status and posiion as required by the
weapons system. ’

Goal Group: System Response Selection

Satisfactory: SATISFACTORY - The C2 System continues to
accept and analyze surveillance data during the engagement
sequence and provides any data to the wespons that will facili-
ate the engagement

Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 System accepts some of the data that is available from the
surveillance system and relays that on to the weapons, but does
not provide all data available that could support a satisfactory
engagement.

Unsatisfactory: UNSATISFACTORY - The C2 System does
not include provisions for passing data on to the weapons sys-
temns.

Not Supported: NOT SUPPORTED - The sensors (or com-
municatons) do not provide the data that might be useful to the
wespon during the engagement sequence.

Not Applicable: NOT APPLICABLE - The weapons system
provides its own sensor data in sufficient quantities or does not
need further 1arget data so it does not desire any further sur-
veillance data once engagement sequence is initiated.
Applicable Functions: [Target Update Processing)

Affects Swat: No

Affects Capacity: No

Affects Geography: No

Additional Remarks:

Instance 'Goal'(16)

Name: Send Dau & Directives in Sufficient Time

Description: The C2 System shall identify threats, calculate
threat parameters, and disperse data and force directives w0
command authorities forces and other agencies in sufficient
ume 10 prepare and execute defensive measures.

Goal Group: Sysiem Timeliness

Satisfactery: SATISFACTORY - The C2 System provides
sufficient threat waming and threat data to control defensive
engagements, and allow friendly assets to perform defensive
measures.

Partially Satisfactory: PARTIALLY UNSATISFACTORY -
The C2 Sysiem provides data 1o support some potential coun-
termeasures 1o threat but does not provide threat data in
sufficient time to support all varieties of passive countermeas-
ures and altematives of threst interdiction.

Unsatisfactory: UNSATISFACTORY - The C2 System does
not provide data sufficiently early to suppont defense of the
assets under attack.

Not Supported: NOT SUPPORTED - The sensor systems (or
communications) are not designed to provide to the C2 System
sufficient daa that could be available to support selected
defense activites.

Not Applicable: NOT APPLICABLE - Either the threat data
does not exist sufficiendy early o allow defense system action
tmeliness is not an issue for this system.

Applicable Functions: {Flight Route Correlation IFF/SIF
Processing,Geographic Determination,Challenge
Processsing,Discrimination, Alerts/Waming Info}

Affects Swat: No

Affects Capadty: No

AfTects Geography: No

Additional Remarks:

Instance 'Goal'(17)

Name: Timely Recovery From Failure
Description: The C2 System should provide for timely
recovery in the event of system failure such that system

~117-

operations are not degraded.

Goal Group: System Timeliness

Satisfactory: SATISFACTORY - The C2 System includes
sufficient fast error detection, analysis, and recovery logic such
that the system can continue normal operation when faced with
single failures or any multiple failures that exceed a probability
of .01 of occurrence.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
system will recover from most failures in sufficient time to
prevent command and control service disruption.
Unsatisfactory: UNSATISFACTORY - There exists a proba-
bility of higher than .01 that the system will fail to accomplish
its mission because of the error recovery time.

Not Supported: NOT SUPPORTED - This goal is concemned
with failures within the C2 System as well as failures within
the weapons and sensors. It is not supported in terms of
recovery from sensor, weapon or communicaton failures, if
these systems have not been designed to provide sufficient
error data or backup capability to allow failure recovery.

Not Applicable: NOT APPLICABLE - This condiuon is
believed to be applicable for all C2 Systems.

Applicable Functions: [Real Time Control System
Monitoring/Recovery]

Affects Swat: No

Affects Capacity: No

Affects Geography: No

Additional Remarks:

Instance 'Goal’(18)

Name: Process Data Fast Enough for Users

Description: The C2 System shall provide response capability
such that the responses are not delayed upon receipt of the
maximum amount of data from extemnal elements.

Goal Group: System Timeliness

Satisfactory: SATISFACTORY - The C2 System provides
sufficient bandwidths in all of its functions so they can handle
the maximum amount of data expected and still meet mission
timelines.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 Systern may overload under very extreme conditions caus-
ing some (degradation of system performance but not compiete
loss of mission.

Unsatisfactory: UNSATISFACTORY - The C2 Sysiem may
become saturated and fail to provide the necessary control to
accomplish a mission.

Not Supported: NOT SUPPORTED - The sensors, communi-
cations or weapons will easily sawrate in this system so that
the C2 System cannot accomplish the mission when confronted
with selected threats scenarios.

Not Applicable: NOT APPLICABLE - The threats that this
system is concemed with are not sufficiently numerous as to be
able 10 sawrate the C2-System.

Applicable Functions: [Real Time Control}

Affects Swat: No

Affects Capacity: Yes

Affects Geography: No

Additional Remarks:

Instance ‘Goal’(19)

Name: Defined Authority Chain

Description: The C2 System shall be based upon a defined
authoritative chain to ensure positive command and control in
all situations (war and peace).

Goal Group: System Authority Control

Satisfactory: SATISFACTORY - The C2 System provides
survivable capability 1o suppont each necessary level of the
command hierarchy and allow them to accomplish their deci-
sion functions.

Partially Satisfactory: PARTIALLY SATISFACTORY - The

C2 Sysiem provides hierarchical control that must reassign
authority under cerain conditions w0 be able 10 meet the mis-
sion goals.

Unsatisfactory: UNSATISFACTORY - The C2 System does
nok survive in & variety of credibic attacks or lacks connectiviry
across the suthonty chain.

Not Supported: NOT SUPPORTED - This goal is not sup-
poried when there is insuffident communications within the
system to0 allow implementation of the defined authority chain.
Not Applicable: NOT APPLICABLE - This goal is believed
10 be applicable 10 all missions.

Applicable Functions: [Authonity Control Arbitration|

Affects Swat: No

Affects Capadty: No

Affects Geography: No

Additional Remarks:

Instance 'Goai'(20)
Name: Collect Data on System Performance
Description: The C2 System shall maintain dats on system
performance and report that data to appropriate authority upon
request
Goal Group: System Authority Control
Satisfactory: SATISFACTORY - The C2 System has a capa-
bility 1o perform automatic recording of system performance
and feedback 1o higher authority.
Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 Systern has a capability to record perforrnance daa but
requires manual analysis of that data.
Unsatsfactory: UNSATISFACTORY - The system does not
have the capability 10 monitor its own performance or to record
data associated with that performance.
Not Supported: NOT SUPPORTED - This goal should be
supported within the C2 System.
Not Applicable: NOT APPLICABLE - This gosl was believed
to be appropniste for all command and control systems.
Applicable Functions: (Sysiem
Monitoning/Recovery Recording)
AfYects Swat: No
Affects Capacity: Yes
Affects Geography: No
Additional Remarks:

Instance ‘Goal’(21)
Name: Decisions Based on Roe
Description: The C2 Sysiemn shall base decisions and control
processes on rules of engagement which allow manual conuol
0 be maintsined without manual stress to accomplish a pro-
cess.
Goal Group: System Authority Control
Satisfactory: SATISFACTORY - The C2 System is designed
in such a way that man can control the activities of the system
and is provided with sufficient data 10 make command level
decisions.
Partially Satisfactory: PARTIALLY SATISFACTORY -
Under ceruin stress conditions, the operators of the system are
provided with more dawa than they can handle or are required
10 make detailed decisions before action that exceeds their abil-
ity to respond.
Unsatistactory: UNSATISFACTORY - Either the C2 System
will take conuol away from the man or will not perform the
basic mission of the system without overloading the man with
decision responsibility and/or data.
Not Supported: NOT SUPPORTED - This goal can be sup-
poried within the C2 System.
Not Applicable: NOT APPLICABLE - This goal 1s applicable
w0 all CQ Systems
Applicable Functions: ([Track UpdateRoute Deviation
Alent, Weapon-Target Assignment,Enemy Order of Banle

Maintenance, Weapon Solution Generation)
Affects Swat: No

Affects Capadty: No

Affects Geography: No

Additional Remarks:

Instance "Goal'(22)

Name: All Anticipaied Environments

Description: The C2 Sysiem shall be openable in all antci-
pated environments.

Goal Group: Sysiem Survivability

Satisfactory: SATISFACTORY - The C2 Sysiem is designed
10 be robust to all anticipaied attacks upon command and con-
trol and can provide sufficent control w allow the system w0
operate.

Partially Satistactory: PARTIALLY SATISFACTORY - The
C2 will meet most threat environments, but may be forced into
graceful degradation as C2 System losses are susiuned under
particular atack scenanos.

Unsatisfactory: UNSATISFACTORY - The C2 Systems shall
caastrophically fail when the enemy elects 1o atack the C2
System.

Not Supported: NOT SUPPORTED - This goal can be sup-
porned within the C2 System.

Not Applicable: NOT APPLICABLE - This goal 1s applicable
to all C2 Systems

Applicable Functions: None

Affects Swat: No

Affects Capadity: No

Affects Geography: No

Additional Remarks: {Degraded Operatons. Mobile NBC Har-
dened]

Instance *Goal'(23)

Name: Graceful Degradation

Description: The C2 System should be capable of operanon in
reduced performance modes in evemt of loss of sensors,
wespons, communications or other asses. The system shall
gracefully degrade as system losses are sustained.

Gosl Group: System Survivability

Satsfactory: SATISFACTORY - The C2 System is designed
for degraded operation as sensor data, weapons, or communica-
tons is lost. The remaining elements within the system will be
used 10 the maximum extent o accomplish the mission.
Partiaily Satisfactory: PARTIALLY SATISFACTORY - The
C2 Sysiem is designed 10 be able 1o cope with loss of system
assets. Under some conditions non-optimal responses to the
threat will be taken because of inappropriate C2 acuon.
Unsatisfactory: UNSATISFACTORY - The C2 System will
breakdown under classes of attack on systems assets and fail 10
obuain appropriate use of the surviving assets.

Not Supported: NOT SUPPORTED - This goal is not sup-
ported if critical elements, such as a communicanon system,
can cause disruption of command and control actvity.

Not Applicable: NOT APPLICABLE - This goal is applicable
w0 all Q2 Systems.

Applicable Functions: None

Affects Swat: No

Affects Capadty: Yes

Affects Geography: No

Additional Remarks: [Degraded Operations.Back-up Capabil-
ity]

Instance ‘Goal'(24)

~-118-

Name: Balanced Decision Making

Description: The C2 Sysiem shall provide a balance of
automated and manual decision making such that operators are
not overioaded with information or decisions.

Goal Group: Amount of Manual Parucipation

Satisfactory: SATISFACTORY - The C2 System is desigred
1o assist the operator in makang his decisions and allows the
operator manual control when so selected by the operator.
Partially Satisfactory: PARTIALLY SATISFACTORY -
Under extreme attack scenarios, the C2 System may provide
100 much information to the operator, or require more control
than he can provide causing a slight degradation in sysiem per-
formance.

Unsatisfactory: UNSATISFACTORY - The C2 Sysiem per-
forms all deasions sutomaucally without manual ovemide or
saturates the operator with more data and decision responsibil-
ity than the operator can handle in likely attack modes.

Not Supported: NOT SUPPORTED - This goal is not sup-
poried by a system when there is insuffident ume to allow
manual decision processes so that all processes must be
automnated.

Not Applicable: NOT APPLICABLE - This goal is applicable
1o C2 Systems.

Applicable Functions: None

Affects Swat: No

Affects Capadity: No

Affects Geography: No

Additionai Remarks:

Instance 'Goal’(25)
Name: Prevent Escalatory Responses
Description: The C2 System shall base deaision and conurol
processes on the current rules of engagement allowing
sufficient manual control 1o be maintain and preventing inap-
propnate responses in siuauons potenually leading to war esca-
lauon.
Goal Group: Amount of Manual Parucipation
Satisfactory: SATISFACTORY - The C2 Sysiem provides
analysis of the threat situation and sufficient information for the
man to consider the appropniateness of altemative response
acuons.
Partially Satisfactory: Parual Sausfactuon - The C2 System is
designed in such a way that an operator, without proper com-
mand authonty, could unuer some circumstances select actions
that would escalate the state of the war.
Unsatisfactory: UNSATISFACTORY - The C2 Systan was
designed 0 automaucally engage the weapon system without
considerauon of the poliucal situauon.
Not Supported: NOT SUPPORTED - This goal is not sup-
pored if there is insufficient communications of political status
or threat assessment saws to allow informed military/political
decision making.
Not Applicable: NOT APPLICABLE - This goal is not appli-
cable in conditions where the system has been designed to
always perform unconstrained engagement.
Applicable Functions: None
Affects Swat: No
Affects Capacity: No
Affects Geography: No
Additional Remarks:

Instance 'Goal'(26)
Name: No Single Operator Can Drsabie System
Description: No single system operator shall be capable of
disabling the system or causing the system 1o take undesirea
acuon.
Goal Group: System Secunty and Fault Tolerance
Satisfactory: SATISFACTORY - The C2 System is designed
13 such a way that command authonty is mawntained in the
decision process and that individual operator action can be
detected and overndden at higher authonty levels.
Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 System s designed 1n such a way that most activities of a
parucular operator can be detected and overndden.

Unsatisfactory: UNSATISFACTORY - The C2 System 1is
designed in such a way that one operator can, without detec-
uon, cause a major los- in systemn performance by eclecung
inappropriate or no acuvity.

Not Supported: NOT SUPPORTED - Ths goal can be sup-
ported within the C2 System.

Not Applicable: NOT APPLICABLE - This goal is applicable
to al C2 Sy-ems.

Applicabie Functions: [System Monitoring/Recovery,Operator
Input Processing]

Affects Swat: No

Affects Capadty: No

Affects Geography: No

Additional Remarks: [Secure Data Processing]

Instance 'Goal’'(27)

Name: No Program Can Disabie

Description: No single system C2 programraer should be capa-
ble of establishing a program that can disabie a system or cause
a ty:ztem to take undesired actions.

Goal Group: System Secunty and Fault Tolerance
Satisfactory: SATISFACTORY - Software withun the C2 Sys-
tem has been designed and tested to ensure that there arc no
provisions in U~ software code that could cause a system to
not operate, or 1o take an tnapproprate response.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
software system has been designed tn a hierarchical top-down
manner '0 allow reasonable confidence that 1t will periorm
correctly despite ili-intengons of any systern programmer.
Unsatisfactory: UNSATISFACTORY - The C2 System has
evoived through complex software changes and wers (s
sufficient review and esting ol the software so tha: there 1s not
a high confidence that the system will perform inappropnately
if a malicious software fault has been included.

Not Supported: NOT SUPPORTED - Thus goal can be sup-
ported within the C2 System.

Not Applicable: NOT APPLICABLE - This goal 1s not appii-
cable if the C2 System does not include software.

Applicable Functions: [System Montionng/Recovery |

Affects Swat: No

Affects Capadity: No

Affects Geography: No

Additional Remarks: [Secure Data Processing]

Instance ‘Goal’(28)

-119-

Name: Releases/Roe’s Protected

Description: All releases and rules of engagement sha'' be pro-
tected wathin the C2 System.

Goal Group: System Secunty and Fault Tolerance
Satisfactory: SATISFACTORY - The C2 System has been
designed so that the enemy may not infer the current release
status or rules of engagement without incumng substantial
penalty.

Partially Satisfactory: PARTIALLY SATISFACTORY - The
C2 Systen has been designed 1n such a way that they enemy
may, by expending his resources, perform an expeniment that
will determine the release state and rules of engagement being
employed so that he may exploit these in the future. However,
this informaton will come at high cost to the enemy.
Unsatisfactory: UNSATISFACTORY - The CI System has
been designed in such a way that the enemy may perform
experiments that will provide him with informauon of the
likely release status and rules of engagement that can be
exploited in 2 future engagement.

Not Supported: NOT SUPPORTED - Thus goal can be sup-
ported within the C2 System.

Not Applicable: NOT APPLICABLE - Thus goal 1s applicable
1o all C2 Sysiems.

Applicable Functions: None

Aflects Swat: No

ANects Capadty: No

Affects Geography: No

Additional Remarks: [Physical Secunty,Survivable
Communications,Secure Data Processing]

Instance 'Goal (29)
Name: Redundancy/Backup
Description: The system shall have redundancy and backup
features o0 assume backup responsibility in the event of an
online system element failure.
Goal Group: Sysiem Security and Fault Tolerance
Satisfactory: SATISFACTORY - This system has been
deugned so that no combination of failures that are more likely
than .01 will degrade the system operation.
Partially Satisfactory: PARTIALLY SATISFACTORY - This
system has been designed with sufficient backup capability so
that a minor degradaton in the system performance may occur
under selected failure modes, bwt the system mission will not
be substanually degraded.
Unsatisfactory: UNSATISFACTORY - The system has been
designed in such a way that a likely collecion (closer than
These faults may be increased in likelihood by threat action.
Not Supported: NOT SUPPORTED - This gosl can be sup-
porned within the C2 System.
Not Applicable: NOT APPLICABLE - This goal is applicable
o0 all C2 Systams.
Applicable Functions: [Real Time Control System
Monitoring/Recoveryj
AfTects Swat: No
Affects Capacity: No
Affects Geography: No
Additional Remarks:

-120-

s. Class: Goal Group

Instance 'Goal Group'(1)
Name: System Robustness
Description: Sysiem Robusmess:
The System Robustness Goals define the desired sysiem
capability with respect 10 the ability o defend against all types
of threats under all probable conditions of attack.

Instance ‘Goal Group'(2)
Name: Surveillance Data Use
Description: Surveiilance Data Use:
The Surveillance Data Use Goals define the desired system
capability with respect 10 the obtaining the maxuumum amount
of information fron.. the received surveillance data.

Instance 'Goal Group'(3)
Name: System Response Selection
Description: Sysiem Response Selection:
The System Response Selection Goals define the desired
system capability with respect to the utilizing the most effective
and efficient weapon to negate the threat

Instance ‘Goal Group'(4)
Name: System Timeliness
Description: System Timeliness:
The System Timeliness Goals define the desired syswem
capability with respect 1o the response time associated with
decision making leading to defensive action.

Instance 'Goal Group'(S)
Name: System Authority Control
Description: Sysiem Authority Control:
The System Authority Control Goals define the desired sys-
tem capability with respect to maintining an orderly flow of
data and commands at all times.

Instance 'Goal Group'(6)
Name: System Survivability
Description: Sysiem Survivability:

The System Survivability Goals define the desired system
capability with respect to the systam surviving an attack, main-
taining continuity of operations, and regrouping 0 counter sub-
sequent attacks.

Instance 'Goal Group'(7)
Name: Amount of Manual Participation
Description: Amount of Manual Participation:

The Amount of Manual Participaion Goals define the
desired system capability with respect to maintaining & man-
in-the- loop for control while not overwhelming the operator
with too much data.

Instance 'Goal Group'(8)
Name: System Security and Fault Tolerance
Description: System Security and Fault Tolerance:
The Sysiem Security and Fault Tolerance Goals define the
desired system capability with respect 10 ensuring the security
of the operation of the system and the data contained within it

121

«. Class: Rule

Instance 'Rule’(l)
Excursion Element: Threaus
Excursion Characteristic: Number
Excursion Change: Increase
Impact Element: Sensors
Impact Characteristic: Number
Impact Change: Increase
Rationale: Ensure sensors exist through all phases of a baule.
Notes: Since active sensor assets are expected to be attacked,
an inactive set of sensors brought on-line as primary sensors
are lost may conuibute favorably i0 achieving the necessary
covernige.
Applicable Goals: [Maximum Case Auack.Correlae & Fuse
Data,Control Resources,Suppont Engagements,Give Updates to
Wespons,Graceful Degradation]

Instance ‘Rule’(2)
Excursion Element: Threats
Excursion Characteristic: Number
Excursion Change: Increase
Impact Element: Sensors
Impact Characteristic: Capacity
Impact Change: Increase
Rationale: Ensure individual sensor capacities are not
exceeded.
Notes: Since a greater number of threats are expected in the
baule, individual sensor capacities may need 1o be increased or
sensors may be required 10 have reduced areas of coverage 0
prevent saturation.
Applicable Goals: [Maximum Case Auack.Correlae & Fuse
Data,Control Resources Suppont Engagements,Give Updates 10
Weapons,Graceful Degradation]

Instance 'Rule’(3)
Excursion Element: Threaus
Excursion Characteristic: Number
Excursion Change: Increase
Impact Elenient: Sensors
Impact Characteristic: Survivability
Impact Change: Increase
Rationale: Since sensors are expected 1o be the targets of an
sttack increasing survivability could ensure sensors are avail-
able throughout all phases of the attack, e.g. 1o provide early
waming of follow-on amacks.
Notes: Since sensor assets are expected to be attacked; counter-
measures and passive defense may be an effective means of
preserving sensors necessary 0 conduct surveillance and
response.
Applicable Goals: [Maximum Case Auack Correlae & Fuse
Data,Control Resources,Support Engagements,Give Updates to
Wespons,Graceful Degradation]

Instance ‘Rule’(4)
Excursion Element: Threats
Excursion Characteristic: Spatial Density
Excursion Change: Increase
Impact Element: Sensors
Impact Characteristic: Resolution
Impact Change: Increase
Rationale: Ratonale: 10 ensure that individual targets can be
detected and accurate raid counts can be made.
Notes: Although higher densities of targets may be easier to
detect as 8 whole, sccurate raid counts and positions of indivi-
dual targets may be necessary for targetting weapon systems.
Applicable Goals: [Use all Dats Received,Correlate & Fuse
Data,Control Resources]

Instance 'Rule’(S)

Excursion Element: Threats

Excursion Characteristic: Speed

Excursion Change: increase

Impact Element: Sensors

Impact Characteristic: Location

Impact Change: Different

Rationsle: To ensure there is sufficient time for defensive sys-
tems to react the sensors may need to be moved closer, if pos-
sible, to the threat Jocation.

Notes: In s case where the IF condidon of this statement is
true, there is assumed 10 be a shorter reaction time because of
the increased speed of the threat thereby making early detecton
of the enemy imperative.

Applicable Goals: [Control Resources Muluple Weapons
Commitments,Send Data & Directives in Sufficient Time]

Instance 'Rule’(6)

Excursion Element: Threats

Excursion Characteristic: Speed

Excursion Change: Increase

Impact Element: Sensors

Impact Characteristic: Coverage Volume

Impact Change: Increase

Rationale: To ensure there is sufficient time for defensive sys-
tems 10 react, assuming the sensor location is a constant, the
effective coverage volume or maximum detection range of the
sensor will need 10 be increased so that threat detection can
take place at greater ranges from the protected area.

Notes: In many cases it may not be possible or practical to
attempt to increase the detection range and thus the coverage
volume of the sensor, the applicability of this concept therefore
depends on the type of sensor at its particular chanactenistics.
Applicable Goals: [Conuol Resources Multiple Weapons
Commitments, Send Data & Directives in Sufficient Time]

Instance ‘Rule’(7)

Excursion Element: Threats

Excursioa Characteristic: Speed

Excursion Change: Increase

Impact Element: Sensors

Impact Characteristic: Scan Rate

Impact Change: Increase

Rationale: Threats moving at a higher than expected rate of
speed will obviously cover greater distances in a shorter time
period thus making it necessary to re-visit their flight path more
often 10 determine their exact location and proximity to the pro-
tected area.

Notes: Higher scan rates for existing sensors may not be possi-
ble or practical depending on the sensor type Additionally,
higher scan rates generally mean a shorter maximum range
which may be detrimental in this case.

Applicable Goais: [Control Resources Multiple Weapons
Commitments Send Data & Directives in Sufficient Time]

Instance ‘Rule’(8)

-122:

Excursion Element: Threats

Excursion Characteristic: Detzcuability

Excursion Change: Decrease

Impact Element: Sensors

Impact Characteristic: Sensitivity

Impact Change: Increase

Rationale: In order w0 provide detection capability & the
ranges comparable to that which is achievable with threats of
nomal sensor signature or ECM capability, more sensitive sen-
2013 are necessary (o detect the threst

Notes: Increasing the sensitivity of fielded systems may not be
practical or possible and a new sensor design concept may be
necessary.

-—“

Applicable Goals: [Use all Data Received,Comrelate & Fuse
Data,Control Resources.Send Data & Directives in Sufficient
Time)

Instance 'Rule’(9)

Excursion Element: Threats

Excursion Characteristic: Detectability

Excursion Change: Decrease

Impact Element: Sensors

Impact Characteristic: Type

Impact Change: Different

Rationale: A sensor with a different signature characteristic
may be used to replace or augment the sensor system which
now has difficulty detecting the threat due to a decrease in its
signatre.

Notes: An integraled sensor suite composed of sensors with
sensitivities in different frequency bands (such as radar and IR)
could be used to provide a2 much higher data confidence than a
single sensor.

Applicable Goals: [Use all Daia Received,Correlate & Fuse
Data,Control Resources,Send Data & Directives in Sufficient
Time)

Instance 'Rule’(10)

Excursion Element: Threats

Excursion Characteristic: Maneuverability

Excursion Change: Increase

Impact Element: Sensors

Impact Characteristic: Sensitivity

Impact Change: Increase

Rationale: A target engaged in maneuvers is continually
presenung the sensor with a continuously changing image to
detect, thereby frustrating detection logic within the sensor.
Notes: Increasing the sensitivity of fielded systems may not be
practical or possible and a new sensor design concept may be
necessary. Maneuvering largets represent a ‘special class of
problem for sensors and as a result C2, conunuous dawa is
required on a maneuvering wrget so that C2 cag maintain an
accurate position and velocity.

Applicable Goals: {Use all Data Received,Correlate & Fuse
Data,Control Resources,Give Updates to Weapons]

Instance 'Rule’(11)

Excursion Element: Threats

Excursion Characteristic: Location (Primary basing) -
Excursion Change: Different

Impact Element: Sensors

Impact Characteristic: Location

Impact Change: Different

Rationale: Assuming the Threat moves closer 1o the protected
area, the sensors may need 10 be moved closer, if possible, to
ensure there is sufficient time for defensive systems to react to
the threat locaton.

Notes: There is assumed 10 be a shoner reacuon time because
of the closer proximity of the threat thereby making early
detection of the enemy imperative. In other cases, where the
threat may be relocated to a location where activity is currenly
out of LOS sensor systems may moved, if possible, to mainuin
LOS.

Applicable Goals: [Processing for all Regions Not Rely on
Deniabie Data,Give Updates to Weapons,Send Data & Direc-
uves in Sufficient Time)

Instance "Rule’(12)

Excursion Element: Threats

Excursion Characteristic: Locauon (Primary basing)
Excursion Change: Different

Impact Element: Sensors

Impact Characteristic: Type

Impact Change: Different

Rationale: The objective of this effont is to ensure conunuous
monitoring of threst acuvity is available such that there is
sufficient time for defensive systems to react

Notes: Assuming the Threat moves 10 an area currenty out of
LOS of the existing sensors used 10 monitor activity new sen-
sor assets may need 10 be directed into the area, such as spaced
based assets or ELINT assets which do not have LOS restric-
tons.

Applicable Goals: [Processing for all RegionsNot Rely on
Deniable Data,Give Updates io Weapons Send Data & Direc-
tves in Sufficient Time]

Instance 'Rule’(13)
Excursion Element: Threats
Excursion Characteristic: Characteristic(34)
Excursion Change: Decrease
impact Element: Sensors
Impact Characteristic: Resolution
Impact Change: Increase
Rationale: Depending upon the type of sensor used to perform
identification of targets, tightening the tolerances and providing
an increase in the resolution may yield the ability to detect
snomalies in the detected signal permining posiuve
identification.
Notes: This scheme may not be possible or pracucal for many
sensor lype and aliemate identificaion means may need 10 be
utilized.
Applicable Goals: {Use all Data Received Not Rely on Deni-
able Data,Correlate & Fuse Data,Control Resources Send Dawa
& Directives in Sufficient Time]

Instance 'Rule’(14)
Excursion Element: Threats
Excursion Characteristic: Characteristic(34)
Excursion Change: Decrease
Impact Element: Sensors
Impact Characteristic: Type
Impact Change: Different
Rationale: Decreased identifiability on the part of one type of
sensor may not represent a change in identfiabilty on the pant
of other sensor types operating in different frequency bands.
Notes: This scheme may require the use of sensor assets which
may be fully committed to other areas of responsibility, there-
fore time- sharing of some sensors for other purposes may be
required.
Applicable Goals: [Use all Data Received Not Rely on Deni-
able Data,Comrelate & Fuse Data,Control Resources,Send Data
& Direaives in Sufficient Time]

Instance 'Ruie’(15)
Excursion Element: Threats
Excursion Characteristic: Number
Excursion Change: Increase
Impact Element: Weapons
Impact Characteristic: Number
Impact Change: Increase
Rationale: Ensure that the weapon system are nol
overwhelmed by a numerically superior force.
Notes: In some cases, the weapon systems may be superior
even though they are smaller in numbers. Adding more
weapons to the battle could increase the loads on the C2 facil-
ity.
Applicable Goals: [Maximum Case Attack.Conserve Defensive
Resources,Expend Resources Proportionally]

Instance 'Rule’(16)

Excursion Element: Threats
Excursion Characteristic: Spatial Density

-123-

Excursion Change: Increase

Impact Element: Weapons

Impact Characteristic: Effective Volume

Impact Change: Increase

Rationale: Provide the capability 10 intercept and destroy the
threst &t longer ranges so that the higher density of targets is
thinned out greater distance from the protected area ensuring
greater survivability of individual assets.

Notes: Eliminating threats at greater ranges reduces the possi-
bility of C2 system saquration and weapon conflicts that would
occur due in 8 close in baule. Existing weapon sysitems may
have lower Pk's associated with longer range intercepts and
new wespon systems or modifications 10 existing weapon sys-
tems may be necessary.

Applicadle Goals: [Expend Resources Proportionally, Optimize
Time 10 Intercept, Environmental & Geometnic Conditions]

Instance "Rule’(17)
Excursion Element: Threaws
Excursion Characteristic: Spatial Density
Excursion Change: Increase
Impact Element: Weapons
Impact Characteristic: Probability of Kill
Impact Change: Different
Rationale: Increasing the Pk translates te fewer shots required
10 eliminaie an equivalent number of wrgets, therefore provid-
ing the time needed to enzage more of the threats before they
can threaten assets.
Notes: In wurget rich environments, assuming all wasgets are of
equal vaiue, fire and forget weapons or those with proximity
fuses and large areas of effectiveness could potentially provide
2 more cfficient defense.
Applicable Goals: [Expend Resources Proportionally, Optimize
Time 1o Intercept.Environmental & Geometric Conditions]

Instance 'Rule’(18)
Excursion Element: Threats
Excursion Characteristic: Spatial Den.my
Excursion Change: Increase
Impact Element: Weapons
Impact Characteristic: Firing Rate
Impact Change: Increase
Rationale: To ensure the weapon systems have the ability o
deal with large numbers of threat over a short period of time
without exhausting their total shots and requiring down time to
reload.
Notes: Increasing the Firing Rate/Number of Shots may not be
possible or practical for many existing weapon sysiems.
Applicable Goals: [Expend Resources Proponionally Optimize
Time 10 Intercept, Environmental & Geometric Conditions]

Instance 'Ruie’(19)
Excursion Element: Threats
Excursion Characteristic: Spatial Density
Excursion Change: Increase
Impact Element: Weapons
Impact Characteristic: Type
Impact Change: Different
Rationajle: Weapons currenty being may be ssturated with the
higher spatial density of the threat; utilizing differemt weapon
types (DEWs vs. Aircraft asnd SAMs or SAMs vs. Aircraft)
may have the ability to deal with the threat easier
Notes: Changing the type of weapon may not be feasible
because of basing requirements or technology that is fully
developed.
Applicable Goals: [Expend Resources Proportionally, Optimize
Time 10 Intercept,Environmental & Geometric Conditions)

Instance 'Rule’(20)

Excursion Element: Threass

Excursion Characteristic: Speed

Excursion Change: Increase

Impact Element: Wespons

Impact Characteristic: Speed

Impact Change: Increase

Rationale: Conventional intercepts with a speed disadvantage
require precise timing and geometry to execute and increases
the rate of failure of the intercept due to the ability of the threat
10 "outrun” the interceplor.

Notes: A classic example of this condition is exemplified by
the many atemps of the Soviets 1o down SR-71 reconnais-
sance aircraft without a weapon system capable of equivalent

speeds.

Applicable Goals: [Consider Assets and Risk,Optimize Time
10 Intercept Environmental & Geometric Conditicns,Send Data
& Directives in Sufficient Time])

Instance ‘Rule’(21)

Excursica Element: Threats

Excursion Characteristic: Speed

Excursion Change: Increase

Impact Element: Weapons

Impact Characteristic: Type

Impact Change: Different

Rationale: Weapons currendy being used to defend against a
threat may no longer be effective, since an intercept may be
outside or on the fringes of their perfforance envelope, there-
fore new weapons systems such as Directed Energy Weapons
(DEWs) may need to be employed.

Notes: New weapon systems may need to be developed to
defend against threat that are outside performance envelopes of
current weapons.

Applicable Goais: [Consider Assets and Risk,Opumize Time
to InterceptEnvironmental & Geometric Conditions.Send Data
& Directives in Sufficient Time)

Instance ‘Rule’(22)

Excursion Element: Threats

Excursion Characteristic: Maneuvenbility

Excursion Change: Increase

Impact Element: Weapons

Impact Characteristic: Type

Impact Change: Different

Rationale: Threats with greater maneuverability may have the
capability o out-perform the weapons currendy utilized to des-
troy them, therefore employment of specific weapon types and
tactics may need to be reconsidered.

Notes: This may require redesign of weapon carriage systems
for some sircraft types (if air launched) or may involve re-
thinking of tactics (utilizing SAMs as a fromt-line defense
rather than interceprors).

Applicable Goals: [Optimize Time w0 InterceptMultiple
Wespons Commitments,Environmental & Geometric
Conditions,Give Updates 1o Weapons)

Instance ‘Rule’(23)

-124-

Excursion Element: Threats

Excursion Characteristic: Detectability

Excursion Change: Decrease

Impact Element: Weapons

Impact Characteristic: Sensitivity

Impact Change: Increase

Rationale: The wespon must be sble w0 detect the threst and
follow it w0 an intercept point with its terminal sensor, therefore
the sensitivity should be increased to compensate for the
change in threat signature.

Notes: Increasing the sensitivity of fielded systems may not be
practical or possible and a new weapon design concept may be

necessary.
Applicable Goals: [Optimize Time 10 Intercept,Multiple
Weapons Commitments Environmental & Geometric
Conditions,Give Updates to Weapons)

Instance 'Rule’(24)
Excursion Element: Threats
Excursion Characteristic: Detecuability
Excursion Change: Decrease
Impact Element: Weapons
Impact Characteristic: Type
Impact Change: Drfferent
Rationale: Ratonale: & weapon with a different signature
characteristic may be used 1o replace the weapon system which
now has difficuity intercepting the threat due to a decrease in
its signature.
Notes: An integrated weapon suite composed of multiple sen-
sors with sensitivities in different frequency bands (such as
radar and IR) could be used to provide & much higher kill pro-
bability than a single sensor in 2 weapon.
Applicable Goals: [Opumize Time 1o Iniercept,Multiple
Weapons Commitments, Environmental & Geometric
Conditions,Give Updates to Weapons)

Instance 'Rule’(25)
Excursion Element: Threaus
Excursion Characteristic: Identifiability
Excursion Change: Increase
Impact Element: Weapons
Impact Characteristic: Number
Impact Change: Increase
Rationale: An increase in the number of shots will most likely
be required to eliminate the threat since the overall Pk will be
lower as a result of the increased threat capability.
Notes: Increasing the weapons in battle may have a tendency
to increase the ovenall load on the C2.
Applicable Goals: [Multiple Weapons
Commitnents Environmenual & Geometric Conditions,Send
Data & Directives in Sufficient Time]

Instance 'Rule’(26)
Excursion Element: Threats
Excursion Characteristic: Identifiability
Excursion Change: Increase
Impact Element: Weapons
Impact Characteristic: Probability of Kill
Impact Change: Different
Rationale: The enhanced weapon avoidance capability of the
threat will require more sophisticated or different techniques on
the part of the weapon terminal guidance sensor and system to
prevent the threat from escaping.
Notes: The weapons and tactics utilized to combat 2 particular
threat may need revision in light of enhanced capabilides.
Applicable Goais: [Multiple Weapons
Commitments Environmental & Geometric Conditions,Send
Data & Directives in Sufficient Time]

Instance 'Rule’(27)
Excursion Element: Threats
Excursion Characteristic: [dentifiability
Excursion Change: Increase
Impact Element: Weapons
Impact Characteristic: Type
Impact Change: Different
Rationale: A revision of the weapons that are designated for
use sgainst a perticular threat type may need to occur due to
enhanced capabilides and the unique features of each weapon
type.
Notes: A wespon type with a sensor that is not impsced by

the threat enhancements should be chosen 10 be used in defense
against the threat.

Applicable Goals: {Multiple Weapons
Commitments Environmental & Geomeuic Conditions,Send
Dana & Directives in Sufficient Time]

Instance 'Rule’(28)
Excursion Element: Threats
Excursion Characteristic: [dentifiability
Excursion Change: Increase
Impact Element: Weapons
impact Characteristic: Firing Rate
Impact Change: Increase
Rationale: An increase in the number of shots will most likely
be required to eliminate the threat since the overall Pk will be
lower as a result of the increased threat capability.
Nates: Increasing the Firing Rate/Number of Shots may nat be
possible or practical for many existing weapon systems.
Applicabie Goals: {Muiupie Weapons
Commitments, Environmental & Geometric Conditons,Send
Data & Directives in Sufficient Time])

Instance 'Rule’(29)
Excursion Element: Threats
Excursion Characteristic: Location (Primary basing)
Excursion Change: Different
Impact Element: Weapons
Impact Characteristic: Location
Impact Change: Different
Rationale: Assuming the threat has moved closer, to provide
sn equivalent reaction time, such that intercepts can be per-
formed at equivalent distances from the protected area
Notes: Movement of large numbers, stockpiles of weapons and
their supporting equipment and forces may not be practical due
to geography or location availability.
Applicable Goals: [Optimize Time to Intercept,Multiple
Weapons Commitments,Environmental & Geometric Condi-
tions)

Instance 'Rule’'(30)
Excursion Element: Sensors
Excursion Characteristic: Number
Excursion Change: Increase
Impact Element: C2
Impact Characteristic: Sensor Control
Impact Change: Different
Rationale: Increasing the number of sensors will lead to more
data to process by these functions.
Notes: None
Applicable Goals: None

Instance ‘Rule’'(31)
Excursion Element: Sensors
Excursion Characteristic: Number
Excursion Change: Increase
Impact Element: C2
Impsct Characteristic: Tracking
Impact Change: Different
Rationale: Increasing the number of sensors will lead to more
data to process by these functions.
Notes: None
Applicable Goals: None

Instance 'Rule’(32)
Excursion Element: Sensors
Excursion Characteristic: Locaton
Excursion Change: Different
Impact Element: C2
Impact Characteristic: Sensor Control

-125-

Impact Change: Different

Rationale: Sensor locaton changes will impact the processing
performed for blanking conmtrol, radiation management, and
ECCM control because of coverage changes and the registra-
ton process due 1o locaton changes.

Notes: None

Applicable Goals: None

Instance "Rule’(33)
Excursion Element: Sensors
Excursion Characteristic: Location
Excursion Change: Different
impact Elemenc: C2
Impact Characteristic: Tracking
Impact Change: Different
Rationale: Sensor location changes will impact the processing
performed for blanking control, radiation management, and
ECCM control because of coverage changes and the registra-
lion process due 1o locauion changes.
Notes: None
Applicable Goals: None

Instance 'Rule’(34)
Excursion Element: Sensors
Excursion Characteristic: Type
Excursion Change: Different
Impact Element: C2
Impact Characteristic: Sensor Control
Impact Change: Different
Rationale: The position information, and error distributions of
the various sensor types are likely to be very different from
each other requiring unique schemes for processing the data.
Notes: None
Applicable Goals: None

Instance ‘Rule’(35)
Excursion Element: Sensors
Excursion Characteristic: Type
Excursion Change: Different
Impact Element: C2
Impact Characteristic: Tracking
Impact Change: Different
Rationaile: The position informadon, and error distributions of
the various sensor types are likely to be very different from
each other requiring unique schemes for processing the data.
Notes: None
Applicable Goals: None

Instance "Rule’(36)
Excursion Element: Sensors
Excursion Characteristic: Type
Excursion Change: Different
Impact Element: 2
Impact Charscteristic: Threat Evalustion
Impact Change: Different
Rationale: The position information, and error distributions of
the various sensor types are likely 10 be very different from
each other requiring unique schemes for processing the data,
Notes: None
Applicable Goals: None

Instance 'Rule’(37)
Excursion Element: Sensors
Excursion Characteristic: Type
Excursion Change: Different
Impact Element: C2
Impact Characteristic: Threat Assessment/Identification
Impact Change: Different
Rationale: The position information, and error distributions of

the various sensor types are likely o be very different from
each other requiring unique schemes for processing the data.
Notes: None

Applicable Goals: None

Instance 'Ruile’(38)

Excursion Element: Sensors

Excursion Characteristic: Coverage Volume

Excursion Change: Different

Impact Element: C2

Impact Characteristic: Sensor Controi

Impact Change: Different

Rationale: Due 0 the increased coverage voiume more target
feports are anticipated and will have to be processed.

Notes: None

Applicabie Goals: None

Instance 'Rule’(98)

Excursion Element: Sensors

Excursion Characteristic: Coverage Volume

Excursion Change: Different

impact Element: C2

Impact Characteristic: Tracking

Impact Change: Different

Rationale: Due 10 the increased coverage volume more target
reports are anticipated and will have 10 be processed.

Notes: None

Applicable Goals: None

Instance "Rule’(40)

Excursion Element: Sensors

Excursion Characteristic: Sensitivity

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Sensor Control

Impact Change: Different

Rationale: with the increased sensitivity it is assumed that
more target reponts will be received by the C2 system therefore
increasing the processing load accordingly.

Notes: None

Applicable Goals: None

Instance ‘Rule’(41)

Excursion Element: Sensors

Excursion Characteristic: Sensitivity

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Tracking

Impact Change: Different

Rationale: with the increased sensitivity it is assumed that
more target reports will be received by the C2 systam therefore
increasing the processing load accordingly.

Notes: None

Applicable Goals: None

Instance 'Rule’(42)

Excursion Element: Sensors

Excursion Characteristic: Resolution

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Sensor Control

Impact Change: Different

Rationale: The increase in resolution is assumed o result in a
greater number of largets reported 10 the C2 system therefore
increasing the processing load accordingly.

Notes: None

Applicable Goals: None

Instance ‘Rule'(43)

-126-

Excursion Element: Sensors

Excursion Characteristic: Resolution

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Tracking

Impact Change: Different

Rationale: The increase in resoludon is assumed to result in 2
greater number of targets repored to the C2 system therefore
increasing the processing load accordingly.

Notes: None

Applicable Goals: None

Instance 'Rule’(44)
Excursion Element: Sensors
Excursion Characteristic: Survivability
Excursion Change: Increasc
Impact Element: C2
Impact Characteristic: Sensor Control
Impact Change: Different
Rationale: Assuming the method used to increase survivability
is through radiation management then the C2 sysiem will be
required to perform more processing to provide protection for
the sensor by continuously altering sensor coverage areas.
Notes: None
Applicable Goals: None

Instance 'Rule’(45)
Excursion Element: Sensors
Excursion Characteristic: Capacity
Excursion Change: Different
Impact Element: C2
Impact Characteristic: Tracking
Impact Change: Different
Rationale: Assuming an increase in capacity, more larget will
be reported and more processing will be required on the pan of
the C2 system otherwise, no increase in processing will occur.
Notes: None
Applicable Goals: None

Instance 'Rule’(46)
Excursion Element: Sensors
Excursion Characteristic: Scan Rate
Excursion Change: Different
Impact Element: C2
Impact Characteristic: Tracking
Impact Change: Different
Rationale: Changes in the sensor scan rate translate into not
only the quantity of data received by the C2 system but also
the tming associated with it, increasing the scan rate, for
example, may require the C2 system o update its database
more frequendy.
Notes: None
Applicable Goals: None

Instance 'Rule’(47)
Excursion Element: Weapons
Excursion Characteristic: Number
Excursion Change: Increase
Impact Element: C2
Impact Characteristic: Tracking
Impact Change: Different
Rationale: The C2 sysiem will have more objects to track,
identify and report to other C2 nodes as well as have a greater
number of weapons from which o select from and control for
intercepts.
Notes: None
Applicable Goals: None

lnsal;ce ‘Rule’(48)

Excursion Element: Weapons

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Threat Assessment/Identification
Impact Change: Different

Rationale: The C2 systemn will have more objects 10 track,
identify and report to other C2 nodes as well as have a greater
number of weapons from which 10 select from and control for
inercepts.

Notes: None

Applicabie Goals: None

Instance 'Ruie’(49)

Excursion Element: Weapons

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Weapon Assignment

Impact Change: Different

Rationale: The C2 system will have more objects to track,
identify and report to other C2 nodes as well as have a greater
number of wespons from which to select from and ocontrol for
intercepts.

Notes: None

Applicable Goals: None

Instance 'Rule’(50)

Excursion Element: Weapons

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Weapon Control

Impact Change: Different

Rationale: The C2 system will have more objects to track,
identify and report to other C2 nodes as well as have a greater
number of weapons from which 10 select from and control for
intercepts.

Notes: Non

Applicable Goals: None

Instance 'Rule’(51)

Excursion Element: Wespons

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: Q2

Impact Characteristic: Telling

Impact Change: Different

Rationale: The C2 system will have more objects to track,
identify and report 10 other C2 nodes as well as have a greater
number of weapons from which to select from and control for
intercepts.

Notes: None

Appiicable Goals: None

Instance ‘Rule’(52)

-127-

Excursion Element: Weapons

Excursion Characteristic: Type

Excursion Change: Different

Impact Element: C2

Impact Characteristic: Weapon Assignment

Impact Change: Different '

Ratlonale: The C2 system will have to have provisions made
for assignment and control of the new weapon types and their
roles. The provisions may be in the form of decision logic or
algorithm changes which can impact the system processing
load.

Notes: None

Applicable Goals: None

Instance ‘Rule’(53)
Excursion Element: Weapons
Excursion Characteristic: Type
Excursion Chaage: Different
Impact Element: C2
Impact Characteristic: Weapon Control
Impact Change: Different
Rationale: The C2 system will have to have provisions made
for assignment snd control of the new weapon types and their
roles. The provisions may be in the form of decision logic or
algorithm changes which can impact the system processing
load.
Notes: None
Applicable Goals: None

Instance 'Rule’(54)
Excursion Element: Weapons
Excursion Characteristic: Effective Volume
Excursion Change: Different
Impact Element: C2
Impact Characteristic: Sensor Control
Impact Change: Different
Rationale: The C2 system will be required to maintain surveil-
lance on the long range intercepts as well as compute and con-
trol longer and potentially more complex intercept paths.
Notes: None
Applicable Goals: None

Instance ‘Rule’(55)
Excursion Element: Weapons
Excursion Characteristic: Effective Volume
Excursion Change: Different
Impact Element: C2
Impact Characteristic: Weapon Assignmemt
Impact Change: Different
Rationale: The C2 system will be required 10 maintain surveil-
lance on the long range intercepts as well as compute and con-
trol longer and potentially more complex intercept paths.
Notes: None
Applicable Goals: None

Instance ‘Rule’(56)
Excursion Element: Weapons
Excursion Characteristic: Effective Volume
Excursion Change: Different
Impact Element: C2
Impact Characteristicc Weapon Control
Impact Change: Different
Rationale: The C2 sysiem will be required 10 mainuin surveil-

lance on the long range intercepts as well as compute and con-

wol longer and potentially more complex intercept paths.
Notes: None
Applicable Goals: None

Instance 'Rule’(57)
Excursion Element: Weapons
Excursion Characteristic: Sensitivity
Excursion Change: Different
Impact Eiement: C2
Impact Characteristicc Weapon Assignment
Impact Change: Different
Rationale: The C2 sysiem will have to consider the resultant
effect of the sensitivity change to the weapon in terms of the
selection of weapon for an intercept, wctics for approach of the
arget and proximity of the weapon to wrget for a kill.
Notes: None
Applicable Goatls: None

Instance 'Rule’(58)

Excursion Element: Weapons

Excursion Characteristic: Sensitivity

Excursion Change: Differemt

Impact Element: C2

Impact Characteristic: Weapon Control

Impact Change: Different

Rationale: The C2 system will have to consider the resullant
effect of the sensitivity change to the weapon in terms of the
selection of weapon for an intercept, tactics for approach of the
target and proximity of the weapon to target for a kill.

Notes: None

Applicable Goals: None

Instance 'Rule’(59)

Excursion Element: Wespons

Excursion Characteristic: Probability of Kill

Excursion Change: Different

Impact Element: C2

Impact Characteristic: Weapon Assignment

Impact Change: Different

Rationale: The C2 system will have to consider the resultant
effect of the probability of kill change 1o the weapon in terms
of the selection of weapon for an intercept.

Notes: None

Applicable Goals: None

Instance ‘Rule’(60)

Excursion Element: Weapons

Excursion Characteristic: Speed

Excursion Change: Different

Impact Element: C2

Impact Characteristicc Weapon Assignment

Impact Change: Different

Rationale: The C2 system will have to consider the resultant
effect of the performance capability change to the weapon in
terms of the selection of weapon for an intercept and tactics
used for the intercept. *

‘Notes: None

Applicabie Goals: None

Instance ‘Rule’(61)

Excursion Element: Weapons

Excursion Characteristic: Speed

Excursion Change: Different

Impact Element: Q2

Impact Characteristic: Weapon Control

Impact Change: Different

Rationale: The C2 sysiem will have to consider the resultant
effect of the performance capability change to the weapon in
terms of the selection of weapon for an intercept and tactics
used for the intercept.

Notes: None

Applicable Goals: None

Instance ‘'Rule’(62)

Excursion Element: Weapons

Excursion Characteristic: Firing Rate

Excursion Change: Different

Impact Element: C2

Impact Characteristic: Weapon Assignment

Impact Change: Different

Rationale: The C2 system may require upgrades to take advan-
tage of the capability 10 fire more often and for a greater dura-
uomn.

Notes: None

Applicable Goals: None

Instance "Rule’(63)

Excursion Element: Weapons

Excursion Characteristic: Firing Rate

Excursion Change: Different

Impact Element: C2

Impact Characteristic: Weapon Control

Impact Change: Different

Rationaie: The C2 system may require upgrades to take advan-
uage of the capability to fire more often and for a greater dura-
don.

Notes: None

Applicabie Goals: None

Instance 'Rule’(64)

Excursion Element: Threats

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Sensor Control

Impact Change: Different

Rationale: The C2 system will have a larger overall number of
items 1o process, track, identify, assign to weapons and forward
to other C2 nodes.

Notes: None

Applicable Goals: None

Instance ‘Rule’(65)

Excursion Element: Threats

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Tracking

Impact Change: Different

Rationale: The C2 system will have a larger overall number of
itemns 10 process, track, identify, assign to weapons and forward
to other C2 nodes. :

Notes: None

Applicable Goals: None

- Instance 'Rule’(66)

Excursion Element: Threats

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Threat Assessment/Identification
Impact Change: Different

Rationale: The C2 system will have a larger overall number of
items 1o process, track, identify, assign to weapons and forward
10 other C2 nodes.

Notes: None

Applicable Goals: None

Instance 'Rule’(67)

Excursion Element: Threats

Excursion Characteristic: Number

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Weapon Assignment

Impact Change: Different

Rationale: The C2 system will have a larger overall number of
items 1o process, track, identify, assign 1o weapons and forward
to other C2 nodes.

Notes: None

Applicable Goals: None

Instance 'Rule’(68)

Excursion Element: Threats
Excursion Characteristic: Number
Excursion Change: Increase
Impact Element: C2

Impact Characteristic: Telling

Impact Change: Different

Rationale: The C2 system will have a larger overall number of
items 10 process, track, identify, assign to weapons and forward
w other C2 nodes.

Notes: None

Appiicable Goals: None

Instance 'Rule’(69)

Excursion Element: Threats

Excursion Characteristic: Spatial Density

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Sensor Control

Impact Change: Different

Rationale: It will be necessary for the C2 systern to command
more sensor Tesources to observe the threat to determine its
composition and then utilize the additional sensor data to track
the objects.

Notes: None

Applicable Goals: None

Instance 'Rule’(70)

Excursion Element: Threats

Excursion Characteristic: Spatial Density

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Tracking

Impact Change: Different .
Rationale: It will be necessary for the C2 system to command
more sensor resources o observe the threat to determine its
composition and then utilize the additional sensor data to track
the objects.

Notes: None

Applicable Goals: None

Instance 'Rule’(71)

Excursion Element: Threats

Excursion Characteristic: Speed

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Tracking

Impact Change: Different

Rationale: The C2 functions will be required to respond more
quickly to the threat to intercept and neutralize it before it can
penesrate the protected areas defenses.

Notes: None

Applicable Goals: None

Instance 'Rule’(72)

Excursion Element: Threats

Excursion Characteristic: Speed

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Weapon Assignment

Impact Change: Different

Rationale: The C2 functions will be required to respond more
quickly to the threat 10 intercept and neutralize it before it can
penetrate the protecied areas defenses.

Notes: None

Applicable Goals: None

Instance 'Rule’(73)

-129-

Excursion Element: Threats

Excursion Characteristic: Speed

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Weapon Control

Impact Change: Different

Rationale: The C2 functions will be required to respond more

quickly 1o the threat 10 intercept and neutralize it before it can
penetrate the protecied areas defenses.

Notes: None

Applicable Goals: None

Instance "Rule’(74)
Excursion Element: Threats
Excursion Characteristic: Detectability
Excursion Change: Decrease
Impact Element: C2
Impact Characteristic: Sensor Control
Impact Change: Different
Rationale: The C2 system will potentially be required to per-
form more processing 1o bring more sensor assets (o bear in an
effort 1o search for, detect, and track threats.
Notes: None
Applicable Goals: None

Instance "Rule’(75)
Excursion Element: Threats
Excursion Characteristic: Detectability
Excursion Change: Decrease
Impact Element: C2
Impact Characteristic: Tracking
Impact Change: Different
Rationale: The C2 sysitem will potentially be required to per-
form more processing to bring more sensor assets to bear in an
effort 1o search for, detect, and track threats.
Notes: None
Applicable Goals: None

Instance "Rule’(76)

. Excursion Element: Threats
Excursion Characteristic: Maneuvenability
Excursion Change: Increase
Impact Element: C2
Impact Characteristic: Tracking
Impact Change: Different
Rationale: The C2 system will have o perform more process-
ing to maintain a track of a maneuvering target and continually
feed information on the latest position o the weapon 1o com-
plete s successful intercept.
Notes: None
Applicable Goals: None

Instance 'Rule’(77)
Excursion Element: Threats
Excursion Characteristic: Maneuverability
Excursion Change: Increase
Impact Element: C2
Impact Characteristicc Weapon Control
Impact Change: Different
Rationale: The C2 system will have 1o perfonrn more process-
ing to maintain a track of 3 maneuvering target and continually
feed information on the latest position 10 the weapon to com-
plete a successful intercepe.
Notes: None
Applicable Goals: None

Instance ‘Ruje’(78)
Excursion Element: Threaus
Excursion Characteristic: Weapon Avoidance
Excursion Change: Increase
Impact Element: 2
Impact Characteristic: Weapon Conurol
Impact Change: Different
Rationale: The single shot probability of kill will be lower
resulting the C2 system having 10 perform shoot-look-shoot
processing and having o assign and command more weapons.

Notes: None
Applicable Goals: None

Instance ‘Rule’(79)

Excursion Element: Threats

Excursion Characteristic: Weapon Avoidance

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Weapon Assignment

Impact Change: Different

Rationale: The single shot probability of kill will be lower
resuiting the C2 system having o perform shoot-look-shoot
processing and having to assign and command more weapons.
Notes: Noae

Applicable Goals: None

Instance "Rule’(80)

Excursion Element: Threats

Excursion Characteristic: Weapon Avoidance

Excursion Change: Increase

Impact Element: C2

Impact Characteristic: Telling

Impect Change: Different

Rationale: The single shot probability of kill will be lower
resulting the C2 system having to perform shoot-look-shoot
processing and having lo assign and command more weapons.
Notes: None

Applicabie Goals: None

Instance ‘Rule’(81)

Excursion Element: Threats

Excursion Characteristic: Location (Primary basing)
Excursion Change: Different

Impact Element: C2 '

Impact Characteristic: Sensor Control

Impact Change: Different

Rationale: The C2 system may be required to reassign sensors
10 new areas of responsibility or w task specialized sensor
groups individually to monitor and maintain accurate surveil-
lance data on the threat

Notes: None

Applicable Goals: None

Instance 'Rule’(82)

Excursion Element: Threats

Excursion Characteristic: Identifiability

Excursion Change: Decrease

Impact Element: C2

Impact Characteristic: Sensor Control

Impact Change: Different

Rationale: The C2 system may be required o task more sen-
sors to view the object and therefore provide more daus which
must be processed by the Threat Assessment/Identification
functions.

Notes: None

Applicable Goals: None

Iastance 'Rule’(83)

12N

Excursion Element: Threats

Excursion Characteristic: Identifiability

Excursion Change: Decrease

Impact Element: &2

Impact Characteristic: Threat Assessment/Identification
Impact Change: Diffcrent

Rationale: The C2 system may be required to task more sen-
013 10 view the object and therefore provide more data which
must be processed by the Threat Assessment/ldentificaton
functions.

Notes: None .

B1.
B2.
B3.
B4.

APPENDIX B
CMLP USER’'S MANUAL

Introduction 133
The CMLP Model 0f CZ SyStems ouututete et 135
Operational Overview ittt tie ittt et ettt 139
Form Interactionsttt e e i 140
B4.1 System-Level Operations e 140
B4.1.1 Goal Reviewer/Developeri ... 140
B4.1.2 System Sensitivity Rule Developer 142
B4.1.3 C? Function Reviewer/Developeroouuuruunneeo.... 144
B4.1.4 Characteristic Developer 145
B4.2 Baseline-Level Operationst 147
B4.2.1 BaselineSummaryDisplay 147
B4.22 Excursion Form i e 148
B4.2.3 C2 Element SpecificationForm 149
B4.2.4 Sensor/Range Specification Form 151
B4.2.5 Weapons SpecificationForm oL 153
B4.2.6 Threat Specification Form, 155
B4.2.7 Impact AnalysisForm.............. e e 156
B4.2.8 Capacity EvaluationForm 156
B4.29 SwatAnalysisForm L 159
B4.2.10 Goal Evaluator Form 161

-131~

B1. INTRODUCTION

The CMLP system is intended to aid the
designers of C? systems during the early
stages of the C? system life cycle: concept
exploration, concept demonstration, and
concept validation. It allows a designer to
examine existing systems, describe changes in
the functions, characteristics, and relation-
ships of their components, and assess the
results qualitatively and (to a restricted
degree) quantitatively.

The CMLP system has been designed and
programmed with an initial set of functions,

characteristics, and relationships that can be
generalized to many types of defensive
systems. The CMLP system also has the
capability of accepting user inputs to create
and define new functicns, characteristics,
relationships, and evaluation ciiteria. This
provides the user with the ability to define
nearly any type of defensive system and to
manipulate the elements in the manner
necessary to evaluate the system'’s perform-
ance with respect to element sensitivities as
well as to user-defined evaluation criteria.

~133-

B2. THE CMLP MODEL OF C2 SYSTEMS

To interact with the CMLP system, the user
should have an understanding of the model
that underlies CMLP In the paragraphs that
follow, we provide a description of the view
taken in CMLP of C? systems.

The CMLP system is designed to aid the
user in the C? design process and to
qualitatively assess, with the input of the
user, the impact on an overall defense system
of changes in C? system design, supporting
element design (sensors and weapons) and
changes in the threat. The approach taken in
the CMLP system is based on the desire to
complement traditional simulation represen-
tations of C2 systems.

The overall goal of the CMLP system 1is to
have the flexibility to describe and represent
any of the unique C? defensive system types.
To do this, it is necessary to define the bounds
of a C? system. Descriptive data for C2
systems in CMLP are separated into the
following component parts: C2 elements,
sensors, weapons, and threats. C% elements
are defined to be the data analysis and
decision-making portion of a defensive (or
offensive) system. In other words, C?is a
nerve center without the capability to observe
or interact with its environment. Based on
this definition the C? system is worthless
by itself. The sensor, weapon, and threat
components are the environment in which the
C? element operates. As the names suggest,
the threat is the force the C? system is
designed to protect against, the sensors are
responsible for detecting and reporting the
threat to the C2 element, and the weapons are
responsible for eliminating the threat based
on the direction of the C* element. The C2
element requires communication channels to
its sensors and weapons to effectively
dispatch and control its assets; for the
purposes of CMLP, the communication means
are assumed to be inherent between these
elements to simplify the model. One element
may function as both a sensor and a weapon,
e.g., an aircraft may use its on-board
instruments to detect a threat (sensor

function) and may also attack the threa’
(weapon function). The same on-board
instruments may support sensor functions
and weapon delivery.

Each of the defined elements (C?, sensors,
weapons, and threat) have been specified in a
computer display form that has the inherent
flexibility to represent the characteristics or
attributes of any instance of the element. The
initial set of characteristics of sensors.
weapons, and threat supplied with the system
are:

Sensor Characteristics

e Number
e Location
e Type (Band)
e Ccverage Volume
e Sensitivity
e Resolution
e Survivability
e Capacity
e Scan Rate
Weapon Characteristics
e Number
e Location
e Type (Fusing, Warhead)
e Effective Volume/Range
e Sensitivity
e Probability of Kill
e Maximum Speed/Acceleration
¢ Firing Rate/Number of Shots

Threat Characteristics
e Number
e Spatial Density
e Arrival Rate
e Maximum Acceleration/Speed
e Detectability
e Maneuverability
e Weapon Avoidance Capability
e Location
e Identifiability

Although these characteristics can, in
many cases, be expressed in numerical terms
that specifically define the element’s capabili-
ty, numerics alone do not provide sufficient
flexibility. Therefore, an individual element’s

-135-

capability is also defined in terms of the
interactions between elements through their
characteristics. Subsystem sensitivity rules
describe the capability and behavior of
elements as cause and effect relationships.
The general form of a rule is IF “element
characteristic” changes (i.e., increases,
decreases, or is different) THEN “element
characteristic” changes. The rules also
contain fields which describe examples of the
interaction and provide usage notes. Through
the use of rules in this form, changes
impacting defensive (or offensive) system
performance can begin to be analyzed in a
qualitative sense.

Similarly, C? elements are specified in
terms of functions and characteristics. The
functions for the C? elements have been
subdivided into groups. The initial set of
functions and characteristics is as follows:

Sensor Control Functions
e Blanking Control
e Radiation Management
s ECCM Control
e Sensor Tasking

Tracking Functions
e Sensor Data Acceptance
e Coordinate Transformation
e Registration
e Fusion/Correlation
e Track Update
e Ambiguity Resolution
e Track Initiation
¢ Kill Assessment

Threat Evaluaticn Functions
e Raid Composition
e Flight Characteristics
e Strength
e Priority Ranking
e Enemy Order of Battle Maintenance

Identification/Threa* Assessment
Functions

e Flight Route Correlation

e Route Deviation Alert

e [FF/SIF Processing

e Geographic Determination

e Challenge Processing
e Discrimination

Weapon Assignment Functions
e Weapon Status
e Weapon Probability of Kill
e Weapon Intercept Time
e Weapon Target Assignment

Weapon Control Functions
e Weapon Solution Generation
e Weapon Guidance
e Target Update Processing
e Weapon Effectiveness

Telling Functions
e Data Receipt
e Position Translation
e Data Transmission
e Input/output Filtering
e Reporting Responsibility
e Link Status Reporting
e Alerts/Warning Information
e Authority Control Arbitration

Executive Functions
e Real Time Control
e System Monitoring/Recovery
e Recording
e Simulation
e Operator Input Processing
e Display Generation

C2? Characteristics
e Degraded Operations
e Mobile
e NBC Hardened
e Physical Security
e Survivability Communications
e Back-up Capability
e Secure Communications
e Secure Data Processing

As in the case of the sensors, weapons, and
threats, rules defining C? element behavior
based upon changes in the other elements are
also defined. The initial set of rules developed
from these element characteristics forms the
foundation of the CMLP system.

Rules describing behavior are also. by
themselves, insufficient; some level of overall
capability assessment of the defensive svstem
is required. Traditional simulation tech-

-136-

0

niques are generally used to determine a
system'’s capability based on a given attack
scenario. In order to provide a low-cost
alternative that has utility in the earliest
phases of the C2 system life cycle, a series of
idealized goals has been generated that apply
to any defensive system. These goals describe
in qualitative terms the expectations of a
complete system. The goals are subdivided
into groups as follows:

Robustness
e Maximum case attack
e Processing for all regions
e Conservation of defensive resources
e Expend resources based on value of
assets under attack

Surveillance Data Usage

e Use all received sensor data

e Do not rely on data sources that are
deniable by the enemy

e Obtain best estimate of raid strength

e Correlate and fuse data

@ Use sensors to monitor missions/
resources

e Use sensor to verify engagement
results

Weapon Response Selection

o Consider value of assets at risk if defen-
sive action succeeds (i.e., salvage
fusing)

e Optimize time to intercept

e Allow multiple weapon commitments

e Consider environmental and geometric
conditions

o Use intelligence and doctrinal employ-
ment information

e Provide weapons with threat updates

Timeliness

e Send data and directives in time to
ensure that defensive posture is
established :

e Provide for timely recovery from
failure

e Provide capability to process maxi-
mum data from all sources

Authority Control
e Defined chain of authority
e Maintain data on system performance
e Base decisions on ROE

Survivability
e Operate in all anticipated environ-
ments
e Graceful degradation

Degree of Manual Participation
e Balance automated and manual
processes
e Allow sufficient manual control to pre-
vent escalation

Security and Fault Tolerance
e No single operator can disable system
e No program can disable system
e All releases and ROEs protected from
compromise
o Built in redundancy and backup

Each goal has five defined levels of
performance: Satisfactory, Partially Satisfac-
tory, Unsatisfactory, Not Applicable, and Not
Supported. These performance levels are
intended to provide guidelines to the user
when evaluating a particular system.

To make the goals, as a subjective
evaluation tool, more closely related to the
element interactions, relationships between
element characteristics and goals have been
developed. These relationships identify inter-
actions hetween elements, or changes in a C2
element, that could impact the ability of a
system to meet the criteria required to satisfy
a goal.

To function as a complete tool, CMLP needs
some capability to measure the effectiveness
of a system against hypothetical attack
scenarios. The Sensors and Weapons against
Threat (SWaT) Model and Capacity Model
meet this need.

The SWaT Model utilizes data about the
sensors, weapons, and threat that has been
input by the user to make an assessment of the
number and types of threats that may be killed
and the number of weapons used. The
assessment is based on probability of the
system tracking threats, the number and

-137-

types of threats, the number of weapons, and
the probability of kill of a weapon versus a
specific threat. Additionally, the SWaT model
provides for the establishment of zones of
defense, which are generalized to be
concentric circles known as range bins,
around a hypothetical defended area. In each
of the range bins the user can specify the order
in which the threats are to be engaged, the
percentage of threats to be engaged, the
priority of weapon usage, the percentage of
available weapons, and the specific weapons
to be used against each threat. The CMLP
svstem uses this data and the probability data
supplied about each of the sensors and
weapons to compute the number of threats
killed and the weapons used for each range
bin. The results of each successive range bin
are then iteratively fed into the next to
perform the same type of calculation. The
flexibility provided by the user inputs and the
multiple range bins provides the capability to
perform “what if” experiments to determine
potential strategies to counter a specific
threat. The SWaT model is not designed to
have the accuracy of the depth a simulation
provides, but, assuming realistic data is used
as inputs to the probabilistic model,
reasonable results can be expected and can
assist in pre-simulation analysis to better
define simulation experiments to be con-
ducted, thus reducing the amount of
simulation time necessary.

The Capacity Model provides the capability
to establish an estimate of the various system
processing loads (such as speed, memory, and
timing) based on the individual loads
associated with the performance of the C2
function groups. It also provides the
capability to evaluate the potential process-
ing load impacts as a result of changes in the
sensors, weapons, or threats, as well as
processing load changes resulting from
changes in the functional performance

capability of the C? elements. The Capacity
Model utilizes an estimate of the percentage
of the total current processing capacity
(typically in MIPs, bytes, or seconds) that the
load represents, and the required spare
capacity of the system, as astarting point. The
functional groups are then assigned a portion
of the total processing load as a percentage,
thus creating a point of reference for
estimating impacts. The impacts are esti-
mated for each functional group in terms of
the percentage change to the numbers of
sensors, weapons, or threats and predefined
mathematical relationships. These mathe-
matical relationships are in form of linear,
square, cubed, logarithmic, or other prespeci-
fied expressions applied in any combination to
the percentage change in sensors, weapons,
and threats. The CMLP system computes new
percentages of the processing load based on
these mathematical relationships, normalizes
the load to 100%, and presents the user with
the percentage change for each function
group. The user has the capability to edit the
new percentage load to account for any other
changes that cannot be handled mathemati-
cally. As in the case of the SWaT Model, the
Capacity Model is not designed to provide
exact answers to processing load changes, but
to give the user an estimate of the impact of
proposed system changes.

A search capability for identifying systems
for which particular criteria are met will be
provided in a future version of CMLP This
feature, known as Analogy Development,
permits the user to find equivalent systems to
the one under development and compare them
to determine how other systems met a
particular goal. Through this means, knowl-
edge gained through the development of one
system can be applied to other systems to
solve similar problems and to meet the
established goals.

-138-

B3. OPERATIONAL OVERVIEW

A baseline C? system stored in the CMLP
system is used as a starting point from which
new baselines ore created and evaluated.
These subsequent baselines are called
excursions during the process of their
derivation from the parent baseline. An
excursion is created by loading a baseline and
altering the information in it relating to any
of the system elements, models, or evalua-
tions. Once the user is satisfied with the
changes made to the excursion, it is saved and
becomes a new baseline. The capability of
developing new baselines from scratch is
available to the user as well. In this case, the
same means to enter the data are used, but
there are no preexisting data to help the user
get started.

All interactions with a baseline are under
the control of the user through the forms that
are generated by the CMLP system.
Operations can be controlled through the use
of the mouse; the keyboard is used for text
entry. 'The predefined forms guide the user’s
interactions and provide places to receive
text; they display user-entered data and
system-generated results. Forms are com-
posed of boxes which in turn contain fields. In
the next section, details of each of the fields,
boxes, and applications (operations) which
comprise the forms in the CMLP system will
be presented.

In general, the system is controlled by
selecting either data appearing in a field
within a box or an application button by
clicking the mouse. An application button isa
bordered and labeled space within a box which
corresponds functionally to a pushbuttonona
contro] panel. Clicking is the process of
pointing at a button or data item with the
cursor by moving the mouse on the table top,
then pressing the left button on the mouse and
immediately releasing it. The selection of an
item or a button will cause the system to take
appropriate action.

In the case of data items that are selected,
the system may respond by displaying related
data in other boxes. Or, the system may take
the selected item as the focus of action
specified by the subsequent selection of a
application button, which often involves
adding, deleting, or changing the selected
data item (and, potentially, the data in other
boxes associated with it). When the system
requires that the user supply a value for a new
or changed data item, it will either provide a
menu for selecting an option (by clicking on it
with the mouse) or a box in which a value can
be typed. The value will then be added to the
appropriate place(s) in the form(s). At times,
the user may have the choice of menu
selection or entering a new value (previously
unknown to the system).

-139-

B4. FORM INTERACTIONS

This section presents the forms that comprise
the CMLP system. The forms are divided into
system-level operations, which allow the use.
to describe to the CMLP system how it is to
manage or make inferences about baseline
systems, and baseline-level operations, which
allow the user to describe the baselines
themselves.

B4.1 SYSTEM-LEVEL OPERATIONS

The system-level operations are conducted
through the following forms: goal developer,
sensitivity rule developer, function developer,
and characteristics developer.

B4.1.1 GOAL REVIEWER/DEVELOPER.
This form (Figure B-1) allows the user access
to descriptions of the goals by which the
baseline will be assessed (via the goal
evaluation form). In reviewer mode, they are
available for review only. In developer mode,
they may be altered to suit the specific
requirements of a particular C2 system.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREd are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

LOAD. Allows the user to select from the
SAVEd goal knowledge bases.

SAVE. In developer mode, allows the user
to save the current state of the goal knowledge
base for LOADing in a later session. If the
user does not SAVE the knowledge base, but
leaves the form via DONE, any changes will

be reported to the knowledge server and will
remain in force until the user EXITs from
CMLP The changed data will be available for
subsequent invocations of the goal developer
within the current session; the SAVE need
only be done before session EXIT.

e Goal Group Box. The goals are organized
into goal groups, through which they are
selected for display in the form. The goal
group box lists the available goal groups.
Clicking the mouse on the desired goal group
will result in the names of the goals in the
group being displayed in the goal name box.

e Goal Name Box. This box allows the user
to specify the goal to be displayed on the form.
Clicking the mouse on an existing goal will
result in the display of the data for that goal.
This box is used in conjunction with the goal
developer application buttons box.

e Goal Developer Application Buttons
Box. The application buttons allow the user to
add and delete goals as well as to save the
resultant changes (developer mode only).

- Another allows the user to. deselect the

curréntly selected goal. The buttons are
described below.

STORE. In developer mode, saves the
changes made during interaction with the
form.

REVERT. In developer mode, discards any
changes made since the last time the STORE
button was pressed, or the opening of the form
if it has not yet been pressed.

NEW. In developer mode, allows the
creation of a new goal within the selected goal
group. Clicking the mouse button on NEW
will result in the display being cleared so that
the data for it can be added by the user. If no
goal group is selected (see DESELECT
below), adds a new goal group. '

DELETE. In developer mode, deletes the
currently selected goal and its associated
data. If there are no goals in the selected goal
group, deletes the goal group and associated
data.

DESELECT. Removes the
selection(s).

current

-140-

e Goal Description Box. This box is

GOAL. DEVELOBER = -« « =17 = 20 woin oaioishonryuiimes fo 70 rmdoa®.gies
Jwetr) (Coome) (_camcer) (__toao) (C_save)
GOAL GROUP

SJGENERAL GOAL

Systea Robustness Goals

3 surveillance Data Use Goals

Systea Response Selection Goal
ystea Timeliness Goals

Systea Authority Control Goals
Systea Survivability Goals

CONSIDER ASSETS AND RISK
OPTIMIZE TIME TO INTERCEPT
MULTIPLE WEAPONS COMMITHNTS
FWVIRNNTL & GEOMETRC CONDS
UPDATES TO WEAPONS

- »

| GOAL DESCRIPTION

The C2 System shall consider the value of assets
at risk, degree of risk, pcobability of defensive
actions success, and the risk to assets that aay
result fros defensive actions.

O satisfactory = CRITERION FOR DEGREE OF GOAL SATISFACTION
& Partially Satisfactory [} PARTIALLY SATISFACTORY - The System utilizes
O Unsatisfactory Bilimited information and rules of thumb for
§i ass1gning weapons to specific threats or makes
O Not Supported 3 unsupported assumptions in the nature of the threat
D Not Applicable B type for performing assigrment.

AFFECTS
swal Mede) T Yes Capscity Mede) JNo Seagraphy medel T No

S} APPLICABLE FUNCTIONS
Raid Coaposition Camnnt)
Strength G

Priority Ranking
Weapon Probability of Kill
Weapon-Target Assigmment

S| ADDITIONAL REMARKS

89-05-014

Figure B-1. Goal Reviewer/Developer Form

e Satisfaction Criterion Box.

This box

displayed below the above three boxes and
displays the description of the goal.

e Criterion . Selection Box. The goal
criterion selection box allows the user to
select the degree of satisfaction criterion
displayed in the satisfaction criterion box to
its right. Clicking on a selection displays the
text of the criterion.

describes the conditions that must be met for
the selected goal to be satisfied to the selected
degree.

e Affects Box. This box shows whether
other specified component models can affect
the selected goal's evaluation (i.e., judged
degree of goal satisfaction).

~-141-

e Applicable Functions Box. This box lists
functions for which a status change can affect
the selected goal’s evaluation. Clicking on a
function selects it for action by the applicable
functions buttons.

e Applicable Functions Buttons. These
buttons act as follows:

ADD. Allows the user to add a function to
the list of applicable functions. Pops up a list
of functions that are not currently in the list
and allows the user to select one of them.

DETAILS. Displays the function develop-
er form initialized to the selected applicable
function, or initializes the function developer
form to it if it is already on screen.

DELETE. Deletes the selected function
from the list of applicable functions.

e Additional Remarks Box. Displays tex-
tual additional remarks about the goal. In
developer mode, allows the user to STORE
and SAVE textually entered additional
remarks. .

B4.1.2 SYSTEM SENSITIVITY * RULE
DEVELOPER. The system sensitivity rule
reviewer/developer (Figure B-2) allows the
user to review relationships between system
elements and characteristics. In developer
mode, the user can modify them to meet the
specific needs of any class of C2 system the
user may wish to consider.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREd are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

LOAD. Allows the user to select from the
saved rule knowledge bases.

SAVE. In developer mode, allows the user
to save the current state of the rule knowledge
base for LOADing in a later session. If the
user does not SAVE the knowledge base, but
leaves the form via DONE, any changes will
be reported to the knowledge server and will
remain in force until the user EXITs from
CMLP The changed data will be available for
subsequent invocations of the rule developer
within the current session; the SAVE need
only be done before session EXIT.

e Excursion Element Box. This box allows
the user to select the element of the system for
which changes in characteristics will be
entered. The elements are sensors, weapons,
threats, and C2. Clicking the mouse button on
the desired name will result in the existing
characteristics of the item being displayed in
the excursion characteristics box.

e Excursion Characteristics Box. This box
provides for the selection of the specific
characteristic of the selected element.

e Excursion Change Box. This box
provides for the specification of the type of
change in a characteristic previously selected.

e Impact Element Box. This box allows the
user to select the element of the system on
which a characteristic change will have an
effect. Clicking the mouse button on the
desired name will result in the impacted
characteristics of the item being displayed in
the impact characteristics box.

e Impact Characteristics Box. This box
allows the selection of the characteristic on
which the selected changes will have an effect.

e Impact Change Box. This box allows the
selection of the type of change that will occur
in the impact characteristic as a result of a
selected excursion on a characteristic.

e Rule Developer Buttons Box. In devel-
oper mode, the rule developer buttons allow
the user to save new rules or delete existing
rules. The buttons act as described below.

-142-

<TEXCURSION ELEMENT CHARACTERISTIC O Increase
Sensors 8 Number & Decrease —
weapons 8 Location (Primary basing) O Different SRELCLTN
Threats ¥ Spatial Denstity Crevert)
=2 Speed O Unchanged

3 Detectability

aneuverability

ol <

3/ INPACT ELEMENT : & Increase [SEKCIIIIG
Sensors O Decrease

eapons O Different

gxreats O Unchanged

3

3] RATIONALE

11n order to provide detection capability at the ranges
Jcomparable to that which is achievable with threats of normal
.{sensor signature or ECM capability, more sensitive sensors are
necessary to detect the threat.

| (13 LI3

NOTES

weosaed

{Increasing the sSensitivity of fielded systems may not be
practical or possible and a new sensor design concept may be
necessary. . =

-
S APFLICABLEZ GOALS
DETAILS
USE ALL DATA RECEIVED
5 CORRELATE & FUSE DATA

CONTROL RESOURCES
SEND DATA & DIRCTVES IN SUFFCT TIME

89-05-013

Figure B-2. SS Rule Reviewer/Developer Form

STORE. In developer mode, saves the NEW. In developer mode, allows the
changes made during interaction with the creation of a new rule. Clicking the mouse
form. button on NEW will result in the display

REVERT. In developer mode, discards any being cleared so that the data for it can be
changes made since the last time the STORE added by the user.
button was pressed, or the opening of the form DELETE. In developer mode, deletes the
if it has not yet been pressed. currently selected goal and its associated

~-143-

data. If there are no goals in the selected goal
group, deletes the goal group and associated
data.

e Impact Buttons Box. This box allows the
user to search the rulebase for system-
subsystem interactions. The search can be
either “forwards” (specify an excursion to find
impacts) or “backwards” (specify an impact to
see what excursions could impact it).

FIND. Select one or more of excursion
element, excursion characteristic, impact
element, and impact characteristic, then click
on FIND. If there is a rule which matches the
specified search conditions, it will be
displayed. If there is a further rule, the FIND
button will remain.inverted to signify that.
Press FIND again to display that rule (and so
on). When there are no more rules that match,
the inversion is removed. To abort after the
display of one or more matchingrules, click on
DESELECT.

DESELECT. Deselects the current rule,
displaying only excursion and impact ele-
ments. If in the middle of a FIND, aborts the
display of remaining matching rules.

o Rationale Box. This box displays the
rationale for the displayed rule. In developer
mode, provides for the entry or update of a
rationale.

e Notes Box. This box displays the notes
for the displayed rule. In developer mode,
provides for the entry or update of notes.

e Applicable Goals Box. This box permits
the user to select the goals that may be
impacted as a result of selecting a qualitative
excursion in a baseline, or displays applicable
goals from a selected system sensitivity rule.

e Applicable Goals Application Buttons.
These buttons provide the capability to
include selected goals in a system sensitivity
rule. The buttons are as described below.

ADD. Allows the user to add a goal to the
list of applicable goals. Pops up a list of goals
that are not currently in the list and allows
the user to select one of them.

DETAILS. Displays the goal developer
form initialized to the selected applicable
goal, or initializes the goal developer form to
it if it is already on screen.

DELETE. Deletes the selected goal from
the list of applicable goals.

B4.1.3 C2 FUNCTION REVIEWER/
DEVELOPER. The function reviewer/
developer (Figure B-3) allows the user to
review the functions of the various elements.
In developer mode, it allows the user to create
and define functions necessary to fit the

ot AR TR b vt s TN U DR D S A

I werr) (Coone) (Coamcel) (C_toas) (C_save)

3| FUNCTION GROUP g} FUNCTION
Sensor Control Flight Route Correlation
Tracking ROULe DeviaLIon AlerT>- -~ A E

i} Threat Evaluation F/SIF Processing

‘{Threat Assessment/Id Geographic Determination

“IWeapon Assignment 8 Challenge Processsing

‘Iweapon Control -] Discrimination

$j Route Deviation Alert:

the flight path.

The process which sonitors tracks on a known flight path and
provides a warning indication should the track deviate from

Figure B-3. C2 Function Reviewer/Developer Form

-144-

specific needs of the under
development.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREAJ are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

LOAD. Allows the user to select from the
saved function knowledge bases.

SAVE. In developer mode, allows the user
to save the current state of the function
knowledge base for LOADing in a later
session. If the user does not SAVE the
- knowledge base, but leaves the form via
DONE, any changes will be reported to the
knowledge server and will remain in force
until the user EXITs from CMLP. The changed
data will be available for subsequent
invocations of the function developer within
the current session; the SAVE need only be
done before session EXIT.

e Function Group Box. This box permits
the user to select a C2 function group. When
the user clicks the mouse on a function group,
its function will be presented in the function
box.

e Function Box. The functions for the
selected function group are displayed in the

system

function box. A scroll bar is provided so that

all functions can be reviewed. Functions may
be added or deleted through the use of the
function application buttons. When the user
clicks on a function, the description is
displayed in the function description box.

e Function Application Buttons Box. The
function application buttons are provided to
edit the functions for the selected function
group. The buttons are described below.

STORE. In developer mode, saves the
changes made during interaction with the
form.

REVERT. In developer mode, discards any
changes made since the last time the STORE
button was pressed, or the opening of the form
if it has not yet been pressed.

NEW. In developer mode, allows the
creation of a new function within the selected
function group. Clicking the mouse button on
NEW will result in the display being cleared
so that the data for it can be added by the user.
If no function group is selected (see
DESELECT below), adds a new function
group.

DELETE. In developer mode, deletes the
currently selected function and its associated
data. If there are no functions in the selected
function group, deletes the function group
and associated data.

DESELECT. Removes the current selec-
tion(s).

e Function Description Box. This box
displays the description of a selected function,
or permits the entry of a description for a new
function.

B4.1.4 CHARACTERISTIC DEVELOPER.
The characteristic developer (Figure B-4)
allows the user to define the characteristics of
the C2 system under development.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this Uscr Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

-145-

RIS) DP

C were) C_oone) Ccamcer) C_toao) C__save)

ype
Effective Volume
sensitivity
Probability of Kill

$iweapon Number:

The number of weapons which interface to the C2 system and
3 therefore require data processing by the 2 systea

Figure B-4. Characteristic Developer

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREd are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

LOAD. Allows the user to select from the
saved function knowledge bases.

SAVE. In developer mode, allows the user
to save the current state of the characteristics
knowledge base for LOADing in a later
session. If the user does not SAVE the
knowledge base, but leaves the form via
DONE, any changes will be reported to the
knowledge server and will remain in force
until the user EXITs from CMLP. The changed
data will be available for subsequent
invocations of the function developer within
the current session; the SAVE need only be
d: ne before session EXIT.

e Element Box. This box permits the user
to select an element by clicking the mouse on
the desired element. Thelist of characteristics
will be presented in the characteristic name
box. .

e Characteristic Box. The characteristics
are presented for the selected element. A
scroll bar is provided to permit review of all of
the names. Characteristics can be added or
deleted through the use of the characteristic
application buttons. Clicking on a character-

istic causes its description to be displayed in
the characteristic description box.

e Characteristic Application Buttons Box.
The characteristic application buttons allow
the user to edit the characteristics of a
selected element. The buttons are described
below.

STORE. In developer mode, saves the
changes made during interaction with the
form.

REVERT. In developer mode, discards any
changes made since the last time the STORE
button was pressed, or the opening of the form
if it has not yet been pressed.

NEW. In developer mode, allows the
creation of a new charatteristic within the

. selected element. Clicking the mouse button

on NEW will result in the display being
cleared so that the data for it can be added by
the user.

DELETE. In developer mode, deletes the
currently selected characteristic and its
associated data.

DESELECT. Removes the current selec-
tion(s).

e Characteristic Description Box. This
box displays the description of a selected
characteristic. In developer mode, permits the
entry of adescription for a new characteristic.

-146-

e |

B4.2 BASELINE-LEVEL OPERATIONS
Baseline-level operations are accomplished
through the following forms: baseline
summary display, C® element specification,
sensor/range specification, weapons specifi-
cation, and threat specification.

B4.2.1 BASELINE SUMMARY DISPLAY.
The summary display (Figure B-5) allows the
user to load a baseline system from a

set of available baselines, review top-level .

-~

summaries of its major elements, and obtain
access to more detailed levels.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for

(. were) (ooOME) Caancer) (LOAD) (SAVE)

Auther

Dats 23 May 1908
Systen Type ADI
Wamber 16

Parsat Systes Type ADI
Poarsat Bumbder 3

31 GENZRAL GOAL GROUP 7Total Batis Part] Unsat N/App N/Sup

j Systea Robustness Go
Surveillance Data Us
System Response Sele
Systea Timeliness Go
Systea Authority Con
System Survivabllity

NWwno s
. OONO W
ON > N e
e O W N
=000~ 0O
.OOOOOO

(] (10

SISENSOR TYPE Number

NEAPON PLATFORM TYPE Number

$] THREAT CARRIER TYPE Number

Short Range Radar 110 Interceptor 300 Cruise Missile Submar 48
OTH-B 1 Interceptor 300 Cruise Missile Carrie 100
Long Range Radar 5 HAWK Launcher S0 Bomber 80
Atrborne Radar 2 Patriot Launcher S0
2] COMMENT 3] NOTES,
o a
3| ELEMENT ASPECT ORIGINAL CURRENT
Bomber Mumber 80 180
Interceptor s(Battle) 40 60
HAWK Launcher S(Battle) 40 60
Eneay Order of Battle Mai Func Stat Manual Automatic
Wespon-Target Assigneent Func Stat Not Done Manuas)
Display Generation Func Stat Manual AGM
89-05-008

Figure B-5. Baseline Summary Display Form

-147-

technical reasons, a box in which a textual
d:-cription or textual remarks are displayed).
A second click on the button turns this
capability off: meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREA are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

LOAD. Allows the user to select from the
saved baseline knowledge bases.

SAVE. In developer mode, allows the user
to save the current state of the baseline
knowledge base for LOADing in a later

session. If the user does not SAVE the

knowledge base, but leaves the form via
DONE, any changes will be reported to the
knowledge server and will remain in force
until the user EXITs from CMLP. The changed
data will be available for subsequent
invocations of the baseline developer within
~ the current session; the SAVE need only be
done before session EXIT.

e Version Data Box. This box contains
general information about the baseline being
displayed. The data include the following:

Author. The user responsible for creation
of the displayed version of the baseline.

Date. The date the displayed baseline
version was created.

Systemn. Type. The type of C? system
represented by the baseline (ADI, SDI,
SPADOCC, or other user defined type).

Parent System Type. The system type of
the baseline from which the displayed version
was created.

Parent Number. The version number of
the baseline from which the current baseline
was developed.

e C2 Element Box. This box contains the
type, level, and number of each C? element
stored as part of the baseline. The C2 elements
will be listed in descending level order. The
specific categories are:

C2Element. The name of the C2 element.

Level. The level of the C2 element type in
this baseline (Level = 1 represents the highest
command authority).

Number. The number of this type of C2
element in this baseline.

e Goal Evaluation Summary Box. This box
contains an overview by goal group of the
overall evaluation of the baseline. The
categories are defined below.

General Goal Group. The name of each of
the goal groups.

Total. The number of goals in the group.

Rating Columns. The number of goals in
the group in each rating category. The
categories are: Satisfied, Partially Satisfied,
Unsatisfied, Not Supported, and Not
Applicable.

e Sensors Box. This box provides a
summary of each of the unique sensor types
used in the baseline and their respective
number. An entry is provided for each type in
each range bin.

e Weapon Platforms Box. This box
provides a summary of each of the unique
weapon platform types used in the baseline
and their respective number. An entry is
provided for each type in each range bin.

e Threat Carriers Box. This box provides a
summary of each of the unique threat carrier
types used in the baseline and their respective
number.

e Comment Box. This box shows the notes
stored with the currently displayed baseline.
It is read-only; changes to it are never saved.

e Notes Box. This box allows the user to
comment on the current baseline, as
developed via excursions. It will be saved as a
comment field when the development baseline
is saved.

e Excursion Box. This box shows excur-
sions that have been made to the development
baseline.

B4.2.2 EXCURSION FORM. The excur-
sion form (Figure B-6) allows the user to see

-148-

o B T o R A A T
(Cwap) ((_ooke)
S| ELEMENT ASPECT ORIGINAL CURRENT
Bomber Number 80 180
EO8 Maintenance Func Stat Manual Automatic
Wpn-Target Assgnmnt Func Stat Not Done Manual
Display Generation Ffunc Stat Manual Auto & Ma
B
Figure B-6. Excursion Analysis Form
the excursions that have been applied to the hierarchy, and their functions and
development baseline. characteristics.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen.

e Excursion Box. This box permits the user
to review the excursions. The fields are
described below.

Element. Shows the system element that
was changed.

Aspect. Shows the attribute that was
changed. ~

Original. The evaluation before it was
changed.

Current. The current evaluation.

e Excursion Application Buttons Box. The
buttons are described below.

DETAILS. Displays the current state of
the selected element.

IMPACT. Displays the evaluation assess-
ment form appropriate to the element.

B4.2.3 C2 ELEMENT SPECIFICATION
FORM. This form (Figure B-7) allows the user
10 define speciiic command elements, their

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes ~the form from the
screen, and, in developer mode, reperts
STOREd changes to the knowledge server.
Changes that are not STOREJ are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

e C2? Elements Box. This box supports the
selection of C? element types, as well as their
functions, characteristics and descriptions.
Using the C? element application buttons,
these data can be modified by the user. The
following is a description of the fields.

Type. The (user-definable) name of the C2
element.

Number. The number of a particular type
of C2? element in the baseline.

Level. The level of command assigned to
the C2 element. Level=1 is the highest
command authority; C2 elements are ordered
in descending order of command authority.

sEswr lr-:un‘
FUBRCTITIOE Aegtstrelion
states

& autenatrc

& nama

O net lwpertes
Q net Dere

Iﬁur) C sea€) (casCEL)

LEVIL MUMBER E
T |G
2
31 s

FUNCIION STATUS CE
Slanking Coatral Manual IO
Sensor Data AccCeptance Automattic
Coordinate XJoran Auytomattc
[t Bl I T L e T R
fuslionvCaorreiation Auto a man
Track Updiate Automatic
STATUS
sack-up Capabliliity Parttal
Degraced Operations p--*tal
mobtle ~
NBC Mardened o
Physical Securtily Yes
Secure Communicatioas Yes
i
i Registration:

The process which applies az slgoriim to the recelved

sensor data to determine positlonal errors, due o
translation ecrovs and viewing angle, and correct the
errors.

21 CROUP FUNCTION STAIUS

Sensoc Catrl ECOM Control Mot Done
Sensor Cntrl Aadiation Managesent Mot Done
Sensac Catrl Sensor Tasxing Not Done
Telling Authority cControl Arditration Not Done
Thet Assant/ Otscrisination Mot Done
Threst fval Priority Ranking Not Done

89-05-010

Figure B-7. C2 Zlement Specification Form

e C2 Flement Application Buttons. C2
element applicatior buttons permit tk. user
to modify the data pertaining to the type,
number, and level of the C? elements, and
allow the elicitation of an aggregate list of C2
element functions and characteristics for an
excursion. The application button functions
are described below.

ADD. Allows the addition of a new C?
element type to the development baseline. If
the desired element type does not vet exist,
‘the user may create = NEW one. If the user
does not CANCEL the ADD, the boxes wiil be
cleared so that the data for it can be supplied
by the user.

-150-

MODIFY. Allows the modification of the
Level and/or Number data for the selected C2
element.

DELETE. Allows the deletion of the
selected C? element from the development
baseline.

STORE. Saves the changes made during
interaction with the form.

REVERT. Discards any changes made
since the last time the STORE button was
pressed, or the opening of the form if it has not
vet been pressed.

e C2Functions/Status Box. This box is the
area in which the function groups, functions,
and the status of each function are displayed
for the selected C2 element. A scroll bar can be
used to view all of the data. The status column
to the right of the function name defines the
performance level of the function as
Automated, Manual, Automated and Manual,
Not Done, or Not Supported (by sensor and
weapons). These are contracted as required to
fit in the column width. Clicking the mouse
button on a particular function results in the
display of its description field.

e Function Application Buttons. The
function application buttons provide the
capability for the user to add functions that
currently have a status of Not Done or Not
Supported to modify the status of an existing
function. The buttons are described below.

ADD. Allows the user to add a function
with the status of Not Done or Not Supported
(with a new, active status). '

MODIFY, Allows the user to change the
status of a selected function. If the status is
changed to Not Done or Not Supported the
function will be placed in the summary box.

e C? (.naracteristic/Status Box. This box
displays the C? characteristics and their
statuses for the entire development baseline.
A scroll bar is provided. The status column to
the right of the characteristic name defines
the performance level of the characteristic as
follows:

Yes. The capability exits.

No. This capability does not exit.

Partial. A limited capability exits in this
area.
Clicking the mouse on a characteristic results
in the display of the description of the
characteristic in the description box.

e Characteristic Application Buttons. The
characteristic application buttons allow the
user to modify the status of a characteristic.
There is one button:

MODIFY. Allows the user to change the
status of a characteristic.

e Description Box. This box contains a
description of a C? element, function, or
characteristic selected by the user by clicking
with the mouse. '

e Summary Box. This box displays infor-
mation regarding functions which have the
status of Not Done or Not Supported.

B4.2.4 3ENSOR/RANGE SPECIFICA-
TION FORM. The sensor/range form (Figure
B-8) allows the user to specify any number of
range bins (defensive zones), specify the
sensors in a range bin, and provide the
percentage tracked of individual target types
in each specified range bin.)

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual
description or textual remarks are displaved).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREA are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

e Range Bin Box. This box allows the user
to select a specific range bin. Selection of a

~-151-

SENGON 8o RAMUED SURCLE ICAT L (Mdoare om0 EAR LY. Gotp T

(. xeLr) (oowe

} (Ccancel)

i

DELETE

NUMBER

110

! TARGET

P

S(TRKD)
Bomber 90
Cruise Missile Carrier as
EO4 Atrcraft s3
Support Aircraft 40
Od Submarine 0
Somb Q

1

mi

Figure B-8. Sensor/Range Specification Form

range bin leads to a display of the sensor data
for the range bin.

¢ Range Bin Buttons Box. The application
buttons function as follows.

NEW. Allows the user to create a new
range bin for the baseline.

DELETE. Deletes the selected range bin
and all information associated with it and
subsequent range bins.

e Sensor Type/Number Box. This box
permits the user to review and modify the
sensor systems in a baseline, and to change
their number in each of the user-defined range
bins. The categories are defined below.

Sensor Type. ldentifies the type of
sensor, which may be selected from one of
those defined within the system or may be a

new type defined by the user by means of the
sensor application buttons.

Number. Defines the number of the
particular sensor type in the selected rangs
bin. The number field can be edited using the
application buttons.

e Sensor Type Application Button Box.
This box allows the user to edit the sensor
type and sensor number fields. The functions
of the buttons are described below.

ADD. Allows the addition of a new sensor
type to the development baseline. If the
desired sensor type does not vet exist, the user
may create a NEW one. If the user does not
CANCEL the ADD, the boxes will be cleared
so that the data for it can be supplied by the
user.

~152-

MODIFY. Allows the modification of the
Level and/or Number data for the selected C?
element.

DELETE. Allows the deletion of the
selected C? element from the development
baseline.

STORE. Saves the changes made during
interaction with the form.

REVERT. Discards any changes made

since the last time the STORE button was
pressed, or the opening of the form if it has not
yet been pressed.

e Target Type/Percent Tracked Box. This
box allows the user to review and edit the
target types detectable within a range bin and
their probability of tracking by the system.
The percent tracked field contains the value
used in the SWaT model to determine the
probability of tracking each target type in the
specified range bin. This value may be edited
using the application buttoas.

e Target/Percent Tracked Application
Buttons. The target/percent tracked appiica-
tion buttons allow the user to modify the
percent tracked of a target by the develop-
ment baseline at the selected range bin. There
is one button:

MODIFY. Allows the user to change the
percent tracked of the selected target.

e Sensor Description Box. This box
displays the description of a selected sensor
type, or permits the entry of a description of a
new sensor type. It also displays the definition
of the selected target.

B4.2.5 WEAPONS SPECIFICATION
FORM. The weapons specification form
(Figure B-9) allows the user to create and
define weapon types for use in the SWaT
model and the impact analysis functions.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual

description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREJ are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

e Range Box. This box allows the user to
select a specific range bin for the purpose of
reviewing or editing the weapon platform
data in the selected range bin. Selecting a
range bin causes the weapon platforms
specified in it to be displayed in the weapon
platform box.

e Weapon Platform Box. This box allows
the user to review or modify the weapon
platform data for the selected range bin.
Clicking the mouse on a platform causes data
about it to be displayed in the armament and
description boxes. The fields in the weapon
platform box are described below.

Weapon Platform Type. identifies the
type of weapon platform. The type can be
selected from one of those defined within the
system, or a new type can be defined by the
user with the application buttons.

Number. Defines the total number of the
particular weapon platform in a selected
range bin. The number field may be modified
by the user with the application buttons.

e Weapon Platform Application Buttons
Box. This box allows the user to edit the
weapon platform type and number fields. The
functions of the buttons are described below.

ADD. Allows the addition of a new
weapon platform type to the development
baseline. If the desired weapon platform type
does not yet exist, the user may create a NEW
one. If the user does not CANCEL the ADD,
the boxes will be cleared so that the data for it
can be supplied by the user.

MODIFY. Allows the modification of the
Number data for the selected weapon
platform.

-153-

{ weLs) (_ odame) { canCEL]

Raage Switch
raneE O

S WEAPON PLATFORM TYPE

Interceptor
Patriot Launcher

Patriot

2! TARCGET

Soaber

High Fast Cruise Missile
Low Slow Cruise Misstle
Cruise Missile Carrier

WA
300
%
WREER
6 ' nOOD(FY
YLD
95
a0
40
10

siPatriot SAM:

ar

r to the HAWK
Hlssxle..

A medium range surface to air atssile for

defense. The Patriot amissile is the successo

Figure B-9. Weapons Specification Form

DELETE. Allows the deletion of the
selected weapon platform from the develop-
ment baseline.

STORE. Saves the changes made during
interaction with the form.

REVERT. Discards any changes made
since the last time the STORE button was
pressed, or the opening of the form if it has not
yet been pressed.

e Armament Type Box. This box allows the
user to specify the configuration of the
weapons platform in terms of the armament it
carries. Clicking the mouse on a specific
armament type will cause a display of the
target types in the range bin, the percent

killed with this armament. The fields are
described below.

Armament. Identifies the specific weap-
ons carried by the selected weapon platform
above. This field can be modified by means of
the application buttons.

Number. Contains the number of the
specific armament on the selected weapon
platform. This field can be modified using the
application buttons. ‘

e Armament Application Buttons Box.
This box allows the user to edit the armament
type and number fields. The functions of the
buttons are described below.

-154~

ADD. Allows the addition of a new
weapon platform type to the development
baseline. If the desired weapon platform type
does not vet exist, the user may create a NEW
one. If the user does not CANCEL the ADD,
the boxes will be cleared so that the data for it
can be supplied by the user.

MODIFY. Allows the modification of the
Number data for the selected weapon
platform.

DELETE. Allows the deletion of the
selected weapon platform from the develop-
ment baseline.

e Target Percent Killed Box. This box
allows the user to specify the probability of
kill for a selected ‘armament type, and
whether the armament type should be used on
a parricular target. The fields are described
below.

Target Type. Identifies each of the targets
that have been entered by the user in the
threat form. This field is not editable in this
box. ’

TIEAT SPECIFLACATION . . - -

% (Kill). Provides the selected arma-
ment’s probability of kill (used in the SWaT
model) against each of the target types.

e Weapon/Armament Description Box.
This box permits the user to review the
description of a selected weapon or arma-
ment, or to enter a description of a new
weapon or armament type.

B4.2.6 THREAT SPECIFICATION FORM.
The threat specification form (Figure B-10)
allows the user to create and define threat
types for use in the SWaT model and the
impact analysis functions.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual

(. weLr) (oponm€

Y (cancEl)

<] THREAT CARRIER TYPE

TOTAL

| (T

B Crutse Misstile Submacrine
KU ST Jer PP hefon .

(=ooisy)
| oiLE!i }

43

G

DEPRNG NUMBER

Low Slow OM
High Fast O{
Low Slow O
High Fast Od

(_mooify
DELETE

3
4
{
2

NN e e

to

crutse llsslles..

SICRUISE MISSILE CARRIER (OMC):
An ailrcraft designed with the capabtliity

deliver cruise missiles to a stand-off range
from the intended “arget zone and release the

description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREJ are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

e Threat Carrier Box. This box allows the
user to review and edit the threat carriers in
the baseline. Selection of a threat carrier type
by clicking the mouse on the item will display
the threats carried by the threat carrier, the
range at which they will be deployed, and a
description of the threat (upon request). The
fields of the threat carrier box are described
below.

Threat Carrier Type. Identifies the threat
carriers. The threat types field can be edited
using the application buttons.

Number. Contains the number of the
threat type. The number field can be modified
using the application buttons.

e Threat Carrier Type Application Button

Box. This box allows the user to edit the data
associated with the threat platforms and their
threats. The functions of the buttons are
described below.
. ADD. Allows the addition of a new threat
carrier type to the development baseline. If
the desired threat carrier type does not yet
exist, the user may create a NEW one. If the
user does not CANCEL the ADD, the boxes
will be cleared so that the data for it can be
supplied by the user.

MODIFY. Allows the modification of the
Number data for the selected threat carrier.

DELETE. Allows the deletion of the
selected threat carrier from the development
baseline.

STORE. Saves the changes made during
interaction with the form.

REVERT. Discards any changes made
since the last time the STORE button was
pressed, or the opening of the form if it has not
vet been pressed.

e Threat Type Box. This box specifies the
type of threats carried by each threat platform
and the range at which they will be deploved.
The fields are described below.

Threat Type. Identifies the threats
carried by the selected threat carrier. This
field can be modified using the application
buttons.

Deployment Range. The range at which
all or a portion of a specific threat may be
deployed from a selected threat carrier.

Number Deployed at Range. The
number of the threat type deployed at the
range specified in the deployment range field.
This field can be modified using the
application buttons.

e Threat Type Application Buttons Box.
This box permits the user to edit the cata
associated with the threats. The functions of
the buttons are described below.

ADD. Allows the addition of a new threat
carrier type to the development baseline. If
the desired threat carrier type does not vet
exist, the user may create a NEW one. If the
user does not CANCEL the ADD, the boxes
will be cleared so that the data for it can be
supplied by the user.

MODIFY. Allows the modification of the
Number data for the selected threat carrier.

DELETE. Allows the deletion of the
selected threat carrier from the development
baseline.

e Threat Platform/Threat Description
Box. This box allows the user to review the
description of a selected threat platform or
threat, or to enter a description of a new
threat platform or threat type.

B4.2.7 IMPACT ANALYSIS FORM. This
form is the same as the excursion form.

B4.2.8 CAPACITY EVALUATION FORM.
This form (Figure B-11) allows the user to
generate an estimate of the required
processing load capacity of the C2 system and
to examine the impact on processing load of
hypothetical changes in the system.

e Standard Applications Box. Clicking the
mouse on the following buttons in the

-156-

| CAPACITY EVALUATION - -% .. 0 o0 G- TN

C witr) (_oomE) (C_cawCEL_)

a PROCESSING CAPACITY Percent
besign Load s |CFEaT)
Spare Requirement 25
»

S} FUNCTION GROUP Reqrant

Sensor Control

Threat Evaluation
Thrt Assant and Identific

Tracking 19

Weapon Assignment 26
Weapon Control 12

21 FUNCTION GROUP SENSOR WEAPON THREAT
Sensor Control Linear None None
Tracking Linear None N Squared
Threst Evaluation None None Linear
Thrt Assant and Identif{c None Linear Linear
Weapon -Assignment None Linear N Squared
Weapon Control None None Linear

COMMENTS:
None.

} 1y [

o]

Figure B-11. Capacity Analysis Form

standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reasons, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off, meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREJ are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

e Processing Load Design Display Box.
This box contains general information
regarding the estimated processing required
for the baseline system, the processing load as
a percentage of the total estimated processing
capacity, and the percentage spare processing
capacity required of the system. The fields are
described below.

Processing Capacity. Displays the cate-
gory: Design Load or Spare Requirement.

Percent. Shows the processing capacity
requirement.

e Processing Load Design Buttons. This
box allows the user to edit the data associated
with the threat platforms and their threats.
The functions of the buttons are described
below.

~157~

MODIFY. Allows the modification of the
percentage data for the selected category.

STORE. Saves the changes made during
interaction with the form.

REVERT. Discards any changes made
since the last time the STORE button was
pressed, or the opening of the form if it has not
yet been pressed.

e Capacity Evaluation Box. This box
presents the user with a display of the
processing load breakdown for each of the
function groups. The fields are described
below.

Function Group. The C? function groups
that have defined relationships between the
changes and their impact on the processing.
Selection of a function group by clicking the
mouse on the item will result in the
mathematical equation for computing per-
centage change being displayed in the
relationship box.

Requirement. The percent processing

required by the function group. -
. e Capacity Evaluation Buttons. The capac-
ity evaluation application buttons box allows
the user to edit the requirement. There is one
button:

MODIFY. Allows the modification of the
percentage data for the selected function
group.

e Relationship Box. This box supports the
review and modification of the mathematical
equation used to compute the function ioad.
The relations are defined in terms of the
percentage change to sensors, weapons, and
threat. The percentage change to sensors,
weapons, and threat is arrived at by
computing the net change in terms of a
percentage in the numbers of these items from
the baseline to those used in the current
SWaT model. The user has the capability to
edit and modify the equation as necessary to
accommodate any special requirements or
anomalies in the processing that may occur
due to changes in the function performance or
the algorithms used for the functions.

e Relationship Application Buttons. The
relationship application buttons provide the

capability for the user to modify the
mathematical expressions that define the
method the capacity model uses to define the
new percentage for a given function. There is
one button.

MODIFY. Allows the user to modify the
expression governing the new percent
computation of a selected function.

e Comments Box. This box supports the
entry of textual messages that will be saved by
the system.

e Capacity Evaluation Usage Instructions.
The user selects the capacity evaluation from
the main menu bar and is presented with the
capacity display form initialized with infor-
mation from the baseline. Before performing
the capacity evaluation all system change
data, impacts, SWaT, and goal evaluation
should be completed owing to potential effecs
on capacity. A typical sequence of steps for
utilizing the capacity evaluation is as follows.

1. Observe the excursion changes box
on baseline summary display for changes that
have been made to the baseline.

2. Observe the capacity evaluation box
and note that the new % column has changed
based upon sensor, weapon, or threat changes.
These changes that are performed automati-
cally based on the % change in the total
number of sensors, weapons, or threat for the
system.

3. To account for qualitative changes
such as change in functional performance or a
characteristic, select the function group and,
using the MODIFY button, edit the percent-
age field for the new value. Repeat this for all
desired function groups.

4. To alter a relationship, move to the
relationship box, select the function group,
and select the MODIFY button. Select the
affecting variable (sensors, weapons, or
threat) and select the desired mathematical
relation (linear, squared, cubed, log, etc.).
Perform this for all desired affecting variables
for a single function group, then select
STORE.

5. Perform Step 4, as desired, for all
other function groups.

-158-

6. When all function group values have
been manipulated as desired, observe the
percentage of total processing value and the
spare capacity value.

B4.2.9 SWaT ANALYSIS FORM. This form
(Figure B-12) allows the user to determine
the probabilistic results of a force-on-force
exchange based on user-supplied parameters
and weapon utilization strategies. The SWaT
model provides for multiple defense zones
(range bins) and supports iterative trials to
achieve a desired outcome.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for

Range 1 Results

technical reasons, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREA are lost.

CANCEL. Removes the form from the
screen. Even STOREd changes are lost.

PRINT. Prints all the contents of all the
browsers at every range for the current trial
as “swat.print” in the current directory.

e Range Selection Box. This box allows
the user to review and modify the target,
weapon platform, and armament data for the
selected range. It also allows the user to select
the tactic for the range.

Range 2 Results

o) o) o) Crary) Cao)) Camai)
P———— —— — —
Feel meseL WIICME £ CGiT] [met =oetr mtrens b =t)
taset)| | 22 o
nrie 2 simgie Shat CIED| |raere Ssingie smor o i o
o TAAGET NGO I TARGEY MAGLR S TRD 6 TRED § IMCD 8 NG
Cruise Missile Sutmaring (13 -]] [-] (-] Q Sembng k] 1 95 0 100 1
Righ fast Cruisea wissile 440 -] as S44 0 0 High fast Crutse Missile 440 2 it 0 100 480
Aompar [i 9 krd [“ Low Slow Cruise MWixstile 8 3 ks «) 100 4«3
Cruise missile Carviee 100 1 (13 a3 0 2 Cruise Missile Carrier © 4 s 4] 100 RS}
Low Slow Cruise wissile 87¢ 1 &0 328 43 “ Samd 400 [} [-]] -]]
5, p—— —— - —
3 VEAPON PLATIORM MMBIR N MATILL § BATTLL PRICRITY 3| WEAPON PLATIORM MMBLR N BATTLE & BATTLL PRIORITY

200"

Interceotor <0 2

—
AVALLASL PAIORLTY

1acerceptar 00 0 12 2
HAWVY Leunchar 0 s 7 1

——
AVALILASL PRIDAITY

XILLLD ACALNING GSED ADAINING TSID | ADAINIRG
0 “ 0 600 0 600
2 840 834 1264 HIgh fast Od 2 128
“ 8 7 o2 Lov Slow Ot 20 1080
3 It Ot Carrier
126 s34 somn

Figure B-12. SWaT Analysis Form

~159-

Range. The range bin of interest for
calculating the SWaT solution. The range
bins are assigned through the sensors display
and are not modifiable from the SWaT display.

Tactic. Allows the user to select between

single shots on target or shoot-look-shoot, .

permitting a maximum of two shots on each
target.

e Trial Box. This box allows the user to
recompute different versions of the same
range bin and to step through them to
compare results. Once the STORE button is
selected (see below), only the wversion
displayed will be saved for further SWaT
calculations and all other versions will be
discarded. Selection of a trial fills the boxes
with its data.

e SWaT Application Buttons. These but-
tons permit the user to calculate and store the
results of the SWaT model. The buttons are
described below.

CALC. Calculates the SWaT results based
on the current parameter settings.

NEW. Creates a new trial.

STORE. Deletes all but the current trial,
which becomes trial 1.

e Target Box. This box supports the review
of target information for a selected range bin,
specifies the priority in which targets will be
engaged, and provides the expected percent-
age of targets that will be engageable. The
fields are described below.

Target. The target type as specified from
the threat platform display for the selected
range bin.

Number. The number of each of the
target types for the selected range bin as
specified in the threat platform display.

Priority. The priority in which the targets
are to be engaged by the weapon platforms.
This field can be entered by the user.

Percent Tracked. The percentage of the
targets tracked, as specified in the sensor
display for the selected range bin.

Tracked. The number of each threat type
tracked in the selected range bin. The number
is the integer value of the product of the
number times the percentage tracked.

Percent Engageable. The percentage of
targets that can be engaged by the weapons.
This field, which can be entered by the user, is
intended to account for targets that may be
out of weapon range, or placed by other
factors outside the weapon's capability to
engage.

Engageable. The number of targets
engageable by the weapons. The numberisthe
integer value of the product of the number
tracked times the percentage engageable.

Selection of a line allows the user to modifv
the priority and percentage engaged flelds.

e Weapon Platform Box. This box permits
the review of the types of weapon platforms in
the selected range bin, and the specification of
the percentage of the weapons available to
engage targets, and the order in which the
weapons will be used. The fields are described
below.

Weapon Platform. The types of weapon
platforms for the selected range bin, as
specified in the weapons platform display.

Total. The total number of available
weapon platforms as specified in the weapon
platform display for the selected range bin.

Percent in Battle. The percentage of the
weapon platforms that are available to engage
the targets. The field is user-enterable. The
percentage is intended to represent the
percentage of the total force that has a
battle-ready status.

Number. The number of weapon plat-
forms in the battle. The number is the integer
value of the product of the total times the
percentage in battle.

Priority. The order in which the weapons
are to be utilized. This field can be entered by
the user.

Selection of a line allows the user to modify
the percentage in battle and priority fields. It
also places the selectea - apon platform'’s
armament data in the armament box.

e Armament Box. This box supports the
review and entry of the order in which the
specific weapons on the weapon platforms are
used. The fields in the armament display are
described below.

~160-

Armament Type. The types of armament
carried on the selected weapon platform. The
data in this field are based on data from the
weapon platform display.

Number. The number of each respective
armament type on the weapon platform. The
data in this field are based on data from the
weapon platform display.

Priority. Allows the user to specify the
order in which each type of armament will be
expended by the platform.

Selection of a line allows the user to modify
the priority field.

e Target Summary Box. This box contains
the results of the SWaT calculations for
targets in a selected range bin. The fields are
described below.

Target. The target types involved in the
SWaT calculations.

Killed. The number of targets of each type
calculated by the SWaT model to have been
killed.

Remaining. The number of targets of
each type calculated by the SWaT model to be
remaining, including targets that were
engaged as well as those that were not
engaged or tracked.

e Armament Summary Box. This box
contains the results of the SWaT calculations
for the armament in a selected range bin. The
fields are described below.

Armament. The armament
involved in the SWaT calculation.

Used. The number of shots of the
armament type fired.

Remaining. The number of each type of
armament remaining.

e SWaT Evaluation Usage Instructions.
The user selects the SWaT evaluation from
the main menu bar and is presented with the
SWaT display form initialized at range bin 1.
It should be noted that prior to entering the
SWaT form the user should already have
entered range bins, probability of tracking,
weapon types, armaments, probability of kill,
threat platform data, and threat deployment
range information with the sensors, weapons,
and threat forms.

types

A typical sequence of steps for utilizing the
SWaT form is as follows.

1. User starts at range bin 1 (iniual
value), selects a TACTIC (single shot or
shoot-look-shoot), and TRIAL 1 (initial
value). _

2. In the target box, select each of the
threats and enter the desired engagement
priority and percent engageable.

3. In the weapon platform box, select a
platform and notice that the armaments box is
initialized with the appropriate armament for
the selected platform.

4. Enter the percentage in battle and
the priority for the selected weapon platform.

5. Move to the armament box and set
the priority for each of the armaments.

6. Repeatsteps3, 4, and5forall weapon
platforms in the weapon platform box.

7. Move to the application buttons box
and select CALC,; observe the target summary
and armament summary boxes for SWaT
calculation results.

8. Torecalculate the SWaT results with
different priorities or percentage, select NEW
TRIAL and repeat steps'2 through 7.

9. Upon -completion of the desired
number of trials, click on the TRIAL indicator
until the desired results appear in the form.
Select STORE to save this TRIAL for input to
the subsequent range bin. All other trials will
be discarded. This completes the analysis for
one range bin.

10. To proceed to a subsequent range
bin, select the range bin indicator to move to
the next range bin.

11. Repeat steps 2 through 8 for each
subsequent range bin. _

B4.2.10 GOAL EVALUATOR FORM. The
goal evaluator form (Figure B-13) allows the
user to subjectively measure the capabilities
and attributes of a C2 system against the set of
goals developed for it with the goal developer
form.

e Standard Applications Box. Clicking the
mouse on the following buttons in the
standard applications box has the specified
results.

~161-

1A RIS

‘FNELP -} C _oom€) (camCEL]

o

" |SyStea Robustness
F |Survelll Data Use
|Surverll Data Use

3 GCAL GROUP GENERAL CGaL EVALUATION
3)
System Robusiness Maximum Case Attack Unsatisfactory (oeTales
| |Systea Robustness Processing foc all Regions Satisfaclory
"|System Robustness Conserve Defensive Rescurces Unsatisfaclory

Expend Resources Proportionall Partly Satis
Use all Data Receyived
Not Rely on Dentadle Data

Partly satis
Unsatisfactocy

Figure B-13. Goal Evaluator Form

HELP. Invokes the help system if it is not
already invoked. Displays the text of the
relevant section of this User Manual as the
user moves the cursor into a box (except, for
technical reascns, a box in which a textual
description or textual remarks are displayed).
A second click on the button turns this
capability off; meanwhile the button remains
inverted.

DONE. Removes the form from the
screen, and, in developer mode, reports
STOREd changes to the knowledge server.
Changes that are not STOREJ are lost.

CANCEL. Removes the form from the

screen. Even STOREd changes are lost.

e Goal Group Box. Thisbox allows the user
to select the goal group of interest. Clicking
the mouse on the goal group results in the
short names of the goals in the selected group
being displayed in the goal name box.

e Goal Evaluation Box. This box permits
the user to review the evaluation of each goal.
The fields are described below.

Goal Group. Shows the group in which
the general goal falls.

General Goal. Shows the name of a
general goal.

Evaluation. Shows the evaluation of the
goal.

e Goal Evaluation Application Buttons
Box. The application buttons allow the user to
modify the goal status as a result of changes
made to the baseline and to save the resultant
changes. The buttons are described below.

MODIFY. Allows the modification of the
evaluation data for the selected general goal.

DETAILS. Displays the goal developer
form initialized to the selected general goal,
or initializes the goal developer form to it if it
is already on screen.

STORE. Saves the changes made during
interaction with the form.

REVERT. Discards any changes made
since the last time the STORE button was
pressed, or the opening of the form if it has not
yet been pressed.

-162-

APPENDIX C
SELECTION OF THE LOGIC PROGRAMMING LANGUAGE

To select the logic programming language for
the CMLP project we developed evaluation
criteria, identified available Prologs, per-
formed a preselection against the three most
important criteria (commercial availability,
robustness, runability on VAX/VMS as well as
Sun 3/Unix). and from the languages
remaining se.ected one by evaluation against
the full set of criteria.
Eleven logic programming languages were

on our initial list:

e ALS

¢ BIM

o CLP(R)

e EqL

e Horne

o IF

e MProlog

e PARLOG

e Quintus

e Rhet

e Trilogy

We selected five for closer examination:

ALS, BIM. IF, MProlog, and Quintus. We
eliminated ALS Prolog, an exciting new
research direction for logic programming,
because at the start of the project it had not
completed the transition from research
vehicle to robust commercial product.
Preliminary review narrowed the list down to
Quintus and BIM Prologs for in-depth
evaluation. The detailed results of their
evaluations against the criteria presented in
Section C1 are given in Sections C2 and C3,
respectively. Quintus and BIM were both
strong products. We selected Quintus because
we had extensive previous experience with it,
hence firsthand knowledge of its quality and
robustness; felt that the Quintus library gave
it a significant advantage; and had reserva-
tions about the level and quality of support
available for the BIM product.

C1. EVALUATION CRITERIA
Twelve issues were postulated as the
evaluation criteria for the CMLP logic
programming language.

1. Documentation.

a. Tutorial. Is the introductory
manual suitable for non-Prolog people?

b. User’s Guide. Though higher level
than tutorial, is it still easy to use?

c. Reference Guide.

2. Efficiency. General performance con-
siderations.

a. Hashing/Indexing, Etc. Is there
some scheme for speeding access to clauses?
How many different arguments can be
indexed? How much space does an index take?

b. Speed. How fast? How many LIPS?

¢. Memory Management. Does it do

' any? Is it dynamic (grow on demand) or static

(have to rebuild)? Does it garbage-collect
clause space? The heap? The other stacks?
Can it use virtual memory?

d. Compilation Strategy. Can a com-
pilation be saved on disik? Is the compiler a
separate program?

3. Robustness/Bugs. Does it have bugs?
Does it dump core?
4. Vendor Support. How good is it?

a. Corporate Resources. How many
people work on it? How big is the company?
How sound is the company? How long has the
company been in business? What is the nature
of current development efforts (what improve-
ments are coming)?

b. Location. Vendor should either be
located in the U.S. or have a sound support
network; otherwise getting timely support
will be too big a problem.

5. Development Environment. Is the
environment a separate product?

a. Editor Interface. Is it built in, ora
separate product?

-163-

b. Lint. Is there a lint program? Is
there a cross-referencer?

c¢. Compiler. Is there a separate
compiler?

d. External (C Routines) Linking.
Does it allow linking external (foreign)
routines? Is it part of a separate linking
process. How easy is it?

e. Deliverable Executables. Can
deliverable executables be built? What are the
licensing considerations?

6. Portability. How portable is it? Does it
run on a Sun/3? Sun/4? VAX? PC? Any other
machine?

7. Graphics. What kind of graphics does
it support? What graphics environment does
it run in?

a. Windowing. Does it run in multi-
ple windows? Which windowing system: X
NeWS?

b. Popup/Pulldown Menus/Icons.
Can it get a menu? What kinds of menus?

c. Editing Within Windows. Is edit-
ing integrated?

d. Mouse Support.

e. Function Keys.

f Library Support. Are graphicsina
library? Can some vendor-supplied library be
linked in?

8. Database. What is the nature of any
database it may have?

a. Internal/Memory Based. Does it
support Retract and Erase? Does it provide
additional database-like features?

b. External/Disk Based. Is there an
external database interface? Can any data-

base library (e.g., UNIFY) be linked in easily? -

Are there any extensions to Prolog that use
databases well?
9. Modularity. Support for engineered

and reusable code.

a. Modules. Does it have modules?
Do the modules provide for interface
definitions?

b. Modes. Does it have modes? Does
it use modes to speed compiled code? Does it
use tvpes semantically?

10. Debugging Environment. What is the
nature and extent of the debugging
environment?

11. Conformance to Standards. What
standards does it come closest to now? What
standard will it choose?

a. Edinburgh DEC/10. The quasi-
stanlard shared among several Prologs.

b. Prolog II, European. Used by
Prolog II.

c¢. BSI. Standard being developed by
the British Standards Institute. Has been
adopted by ISO. Supposed to be derived from
Edinburgh. R. A. O'Keefe has had many
problems with it.

12. Predicate Library. Does it provide a
library of Prolog predicates?

C2. BIM EVALUATION

1. Documentation. The documentation
is reasonable, but uses an illogical lavou:.

a. Tutorial. None.

b. User's Guide. None.

¢. Reference Guide. Split into sec-
tions on basics, external language, debugger.
user interface, and database.

2. Efficiency.

a. Hashing/Indexing, Etc. Can index
on any three arguments in compiled code.
Obviously takes more space the more indexes
there are.

b. Speed. Compiled to native code
(i.e., MCB88020 or VAX). We have not run
benchmarks, but BIM claims to be faster than
Quintus.

c. Memory Management. Fixed alio-
cations at startup time, so if you run out vou
must abort and start again. Garbage
collection: BIM collects clause space and
stacks. Virtual memory.

d. Compilation Strategy. BIM com-
piles to native code and has intermediate files
“wic” to hold the results of compilation.
There is a separate compiler program.

3. Robustness/Bugs. We encountered no
serious bugs or core dumps.

-164-

4. Vendor Support.

a. Corporate Resources BIM is a
small company with split priorities. It has
fewer than eight people working on Prolog
development. Soundness is unknown. Cur-
rent development efforts include adding the
record family of predicates, compiler polish-
ing, support for conversion from other
Prologs, improved SunView-based debugger.

b. Location. In Belgium; support via
San Diego. The main expertise of the company
is clearly in Belgium, so timeliness and
expertise of support are potential problems.

5. Development Environment. No
known advantages/disadvantages as com-
pared to Quintus. BIM intertaces C routines
from inside Prolog execution at run time and
has no deliverable executables without special
arrangements.

6. Portability. Runs on Sun (main effort)
and VAX, not on PC or other systems.

7. Graphics. BIM’s entire approach to
.graphics is to give access to the low-level
libraries. In particular, it already has the
. SunView interface wcrked out. BIM works
well with SunView but gives no additional
support. BIM has no plans for XWindows
support, but we could built the library
interface. SunView supports all subcriteria
(windowing, popup/pulldown menus/icons,
editing within windows, mouse support,
function keys, library support).

8. Database.

a. Internal. No information avail-
able.

b. External. Aninterface to the Unify
database library.

9. Modularity.

a. Modules. BIM has modules for
grouping code, not implementation hiding.
There is no interface definition.

b. Modes. BIM has modes; also uses
them to specify indexing.

c. Types. None.

10. Debugging Environment. BIM has an
elaborate SunView-based debugger. It mimics
Sun’s dbxtool to some degree and will do a

better job once BIM gets it running as two
processes.
11. Conformance to Standards.

a. Edinburgh DEC/10. Not at all.
There is a compatibility switch that
supposedly makes it takes C-Prolog syntax.

b. PrologIl, European. Normal style
closer to this.

c. BSI. BIM is part of this European
group which is trying to standardize Prolog.

12. Predicate Library. None.
C3. QUINTUS EVALUATION

1. Documentation. Very high qualitv
Has been the standard against which we judge
other documents. It breaks up the documen:a-
tion somewhat differently from tutorial
user's guide/reference, but not appreciably.

a. Tutorial. No separate tutorial as
such, but the first part of the user’s guide is a
tutorial.

b. User’s Guide. A very comprehen-
sive user's guide. In addition, the library
manual and windows manual contain some
user’s guide material.

c. Reference Guide. The .eference
manual is quite good. There are separate
manual sections for system-dependent fea-
tures, the predicate library, windows, and the
database.

2. Efficiency. General performance con-
siderations were as follows.

a. Hashing/Indexing, Etc. Quintus
builds a hash index on the first argument of a
clause. It also documents how more indexes
can be used by adding secondary predicates.

b. Speed. Seems fast enough, but we
did not perform exhaustive benchmarks.

¢. Memory Management. Has excel-
lent memory management that allocates
additional space as needed. Garbage-collec:s
clause space and the stacks. Uses virtual
memory.

d. Compilation Strategy. Compila-
tions cannot be saved, bi.- whole executables
can. The compiler is bui.: into the normal
executable.

~-165-

3. Robustness/Bugs. No known bugs or
core dumps from Prolog. UniPress emacs,
which is included, will dump core on occasion.
UniPress emacs also has some bugs and
infelicities that are irritating.

4. Vendor Support. Phone support 8
hours a day.

a. Corporate Resources. More devel-
opment and support personnel then BIM.
Quintus seems to be a well-financed company
and has been in business for quite some time.
Current development efforts are constantly
improving the product.

b. Location.
California.

5. Development Environment. Develop-
ment eanvironment is a combination of Prolog
and UniPress emacs. Its problems stem more
from UniPress than from Quintus.

a. Editor Interface. Tight; Prolog
runs in an editor window.

b. Lint. There are lint and cross-
reference utilities.

c. Compiler. Compiler is part of the
Prolog executable (compile/T).

d. Exterpal (C Routines) Linking.
Allows for linking foreign routines that follow
the C, Pascal, or Fortran calling conventions.
Linking is done during program execution
and runs off a simple set of Prolog predicates.

e. Deliverable Executables. Deliver-
able executables can be built using the PAC
(Prolog Application Compiler). License is
needed for each deliverable sold.

6. Portability. Runs on many machines;
Quintus presumably wants it to run on even
more.

a. Sun. Runs on Sur/2, Sun/3, and

Mountain View,

Sun/4.

b. VAX. Runs on VAX/VMS and
VAX/Ultrix.

c. PC. Runs on IBM RT PC running
AIX.

d. Others. Xerox 1100 (Lisp), Apollo,
NCR Tower, IBM 370 (MVS and VM/CMS).

7. Graphics. Quintus runs a separate

package called ProWI2NDOWS.

a. Windowing. ProWINDOWS does

build windows. They are built on top of
SunView, but Quintus plans to implemenc this
on top of X for greater portability.

b. Popup/Pulldown Menus/Icons.
Menus, icons, texts, etc., are all available.

c. Editing Within Windows. Editing
of SunView text subwindows may be
supported.

d. Mouse Support. Yes.

e. Function Keys. Yes.

f. Library Support. Could link X,
NeWS, or SunView libraries, but Quintus
does not give up control of program execution
easily, so SunView has problems when trving
to run in one process.

8. Database.

a. Internal/Memory Based. Quintus
has the record and erase predicates, as wzlil as
clause/3 and assert/3 with references.

b. External/Disk Based. Tight inter-
face to SunUnify that makes any external
relations look like internal predicates. A
limited form of access to the database power is
provided by compiled views, but the interface
definition appears to put quite aburdenonthe
Prolog user of the database.

9. Modularity. There is very good modu-
larity support.

a. Modules. Quintus has modules
that provide for interface definitions.

b. Modes. Quintus has mode declara-
tions, which are ignored.

c. Types. There is a type checker,
written by O'Keefe, in the public domain.

10. Debugging Environment. Fairly nice
implementation of the box model tracer with
spy points.

11. Conformance to Standards. Quintus
is itself a de facto standard, closely matching
DEC/10, Edinburgh. Quintus will probably
support other standards as they emerge.

a. Edinburgh DEC/10. This is the
standard closest to Quintus.

b. Prolog II, European. Does not
conform.

c. BSIL. R. A O’Keefe has manv
problems with this standard; hence Quintusis
unlikely to do much with it.

-166-

